
 Apple® IIGS Spectrum™ 2.5.3
 Scripting Manual

2

Notes on Freeware Edition

From an initial inception as a IIgs communications program
called Impala, Spectrum was developed and released under the

guidance of Dave Hecker of Seven Hills International. Originally
released back in 1991, it was sold by Seven Hills until their

eventual closure.

Seven Hills agreed I could continue to sell Spectrum, so I asked
Eric Shepherd of Syndicomm to sell Spectrum on my behalf. In
2011 Tony Diaz took over Syndicomm and continued to sell it for
me. With the declining sales over the years, I finally decided that

the time had come in 2012 to make Spectrum Freeware.

To coincide with its reclassification, this PDF manual has been
compiled from the original Seven Hills manuals. I have changed

a few words and links here and there, and added new screen
shots and illustrations.

Ewen Wannop - 2012

3

Spectrum

About Seven Hills Software

No Copy Protection
We don’t believe in copy protection—all it does is impair the honest user’s ability to use software to its fullest. We strive to
provide high quality products at reasonable prices. We hope you will support our efforts by not allowing your family or friends
to copy this software.

Questions and Comments
We always welcome feedback—if you have any questions, or suggestions for improving this product, please let us know. In
addition, we would like to hear your ideas for new programs.

Copyrights and Trademarks
This manual and the software (computer program) described in it are copyrighted with all rights reserved. No part of the
Spectrum software or documentation may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, mechanical, photocopying, recording or otherwise, without the prior written permission of Seven Hills Software
Corporation.

SEVEN HILLS SOFTWARE CORPORATION’S LICENSOR(S) MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE. SEVEN HILLS SOFTWARE CORPORATION’S
LICENSOR(S) DOES NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL SEVEN HILLS SOFTWARE CORPORATION OR ITS LICENSOR(S), AND ITS DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS BE LIABLE TO
YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS INFORMATION, AND THE LIKE)
ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF SEVEN HILLS SOFTWARE CORPORATION OR ITS LICENSOR HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. SEVEN HILLS SOFTWARE CORPORATION OR ITS LICENSOR(S) LIABILITY TO YOU
FOR ACTUAL DAMAGES FROM ANY CAUSE WHATSOEVER, AND REGARDLESS OF THE FORM OF THE ACTION (WHETHER IN CONTRACT, TORT (INCLUDING
NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE), WILL BE LIMITED TO $50.

Apple, IIgs, GS and GS/OS are trademarks of Apple Computer, Inc.

Spectrum © 1991-2003 Ewen Wannop
Spectrum is a trademark of Seven Hills Software Corporation

Table of Contents 4

Table Of Contents
Spectrum Scripting

Writing A Script! 6

Running A Script ! 7

Script Language Definitions
Specially-Treated Characters! 7

" (String Delimiter)! 7
^ (Control Character)! 7
(Comment Character)! 8
$ (Replacement Item)! 8

Parameters! 13
VarNum! 13
Value! 13
Character! 14
String ! 14
Volumename, Foldername, and Filename! 14
Label! 15
Statement! 15

Script Commands
Script Development ! 17

Fundamental Commands! 18
Settings! 20
Port Settings! 21
Online Display Settings! 22
Character Filter Settings! 23
File Transfer Settings! 24
Dialing! 26
Script and Program Control! 29
Variables! 31
Getting Input! 34
Branching and Loops! 36
Conditional Tests! 39
Screen Appearance! 43
Prefix Control! 44
Capture Buffer Control! 45
Transferring Files! 46
OS Utilities! 47
Reading and Writing Files! 49
Reading Catalogs! 50

Contents

Table of Contents 5

Script Editor! 50
Error Control! 52
Script Interpretation! 54
Advanced or Specialty Commands! 55

Spectrum Version 2.5.3

Script Language Changes
Script Language Changes! 58
General! 58
Specially-Treated Characters! 59

$ (Replacement Items)! 59
Parameters! 64

VarNum becomes Varname! 64
String ! 64

Script Development ! 65
Fundamental Commands! 66
Settings! 68

Online Display Settings! 68
File Transfer Settings! 68

Dialing! 70
TCP/IP Commands! 70
Script and Program Control! 73
Variables! 73
Getting Input! 75
Branching and Loops! 76
Conditional Tests ! 77
Screen Appearance! 78
Capture Buffer Control! 79
Transferring Files! 79
OS Utilities! 80
Reading and Writing Files! 81
Reading Catalogs! 82
Script Editor! 82
Error Control! 83
Script Interpretation! 83
Advanced Commands! 84
Specialty Commands ! 86

Spectrum Scripting 6

Spectrum Scripting
Scripts are extremely useful for telecommunications. By using scripts you can automate simple tasks (e.g. typing
a password) or complex ones (logging onto a system, sending and receiving mail, downloading files, then
logging off). The limits of a script are up to the imagination and skill of the script author.

This section provides basic information about writing and using scripts. Before trying to write scripts you should
be familiar with using Spectrum.

Writing A Script
Spectrum’s scripting language is very powerful, yet relatively easy to understand because most commands
(built-in instructions that tell Spectrum to perform some action) are simple English phrases. For example, can
you guess what the command Play Sound "Welcome" does? If you guessed that it plays a sound named
“Welcome” then you won’t have much trouble learning to write scripts for Spectrum!

The best way to learn how to write a script is by doing it! Sit down with this manual and just go through it page
by page, learning what each script command does. Many examples are provided in this manual…try them, and
modify them to do something slightly different!

To actually write a script you create a text file using Spectrum’s built-in editor. In that file you simply write one or
more Spectrum commands, placing each command on a line that ends with a Return character. Or you can
place several commands on a single line by inserting a semicolon (;) between each command.

For example, this script…
Display "^LType your name then press Return: "
Get Line 2
Display "^M^J^JHello there $2!^G^M^J^J"
Stop Script

…and this script…
Display "^LType your name then press Return: "; Get Line 2; Display "^M^J^JHello there

$2!^G^M^J^J"; Stop Script

…work exactly the same.

The only limitation to combining commands on a single line is that the line (everything up to a Return character)
cannot exceed 636 characters after all the replacements are made (replacements are explained shortly).

There are several features that don’t affect how the scripts are executed, but they do let you format your scripts
to be more readable. The following formatting features can be used:

•! Blank lines
•! Spaces and/or Tabs at the beginning of a line
•! Different fonts, styles, and sizes
• Comments (text you can read but that will be ignored when the script is run)

Scripting

Spectrum Scripting 7

Running A Script
When Spectrum is told to run a script, it loads the specified script file into memory and begins interpreting the
information in that file. A black box appears at the upper-right corner of the menu bar while a script is running.

If an unrecognized command is encountered, Spectrum stops and displays an error message. The error
message is displayed for approximately 30 seconds (clicking the mouse or pressing a key will dismiss the error
sooner). If the error box disappears automatically, Spectrum hangs up the line. This is a safety feature for scripts
that run unattended (by hanging up, online charges are kept to a minimum).

To stop a script press Escape, R, or choose Stop Script from the Script menu. Stopping a script closes any
open script files and returns control to the user. NOTE: Some script commands temporarily block the use of the
menu bar; if one method does not work, try another.

Script Language Definitions
The Spectrum script language consists of three main parts:

•! Built-in commands that tell Spectrum to do something.
•! Parameters you supply that tell a command exactly what to do.
•! Special characters that are treated differently than normal characters.

The following sections describe each of these components (in reverse order because you need to know about
the special characters before the parameter descriptions will make sense, and you need to know about
parameters before the command descriptions will make sense).

Throughout this manual, “host” refers to any system to which you are connected (e.g. if you are connected to
GEnie, GEnie is the “host” system). If your friend calls your computer, he is still the host because he is the
system to which you are connected (from his perspective, you are the host).

Specially-Treated Characters
The following sections discuss the “special” characters used when writing scripts.

" (String Delimiter)
The double quote mark (") is used to indicate a “string” (a sequence of characters). For example:

NOTE: There is a script command that lets you redefine the string delimiter to be some other character, but
normally it should not be changed.

^ (Control Character)
The caret (^) tells Spectrum that the following letter is a control character. You use control characters to enter
carriage returns, linefeeds, and other characters that cannot be entered directly into a script command. At script

An empty string (no characters): ""

A single character string: "A"

A several character string: "Greetings, Earthling!"

A string that happens to be a
number:

"1234"

Spectrum Scripting 8

runtime ^Letter is replaced by the actual control character. NOTE: Capitalization of control characters does not
matter (^b and ^B are both the same character).

To display the caret (^) from within a script, enter it twice (^^) or use the $^ replacement item (described in the
next section). NOTE: There is a script command that lets you redefine the control character indicator to be some
other character, but normally it should not be changed.

(Comment Character)
The number sign (#) tells Spectrum that the rest of the line is a comment. Comments are not executed when a
script is run Comments are useful to document what your script is doing so it will be easier to modify in the
future. When typing a comment you must include a space after the # sign, then type the comment.

If the number sign is at the beginning of a line, the first word after the sign is also a Label (described later). If you
want to include a comment but do not want it to be a Label then you can use the alternate comment indicator
Rem or Remark.

Example:
This is a comment, and "This" is also a Label
Rem This is just a comment
Remark This is just a comment

$ (Replacement Item)
The dollar sign ($) tells Spectrum that what follows is a replacement item. A replacement item works by
completely replacing the $Item with that item’s current contents, just as if you had actually typed the contents.

For example, the $Date replacement item gets replaced by the current date, in the form of “dd mmm yy”. If
today’s date is November 19, 1993, when this script is run…

Display "Today is $Date.^M^J"

…it works exactly as if you had actually typed:
Display "Today is 19 Nov 93.^M^J"

Of course, the advantage to using the $Date replacement item instead of actually typing the date is that when
the date changes, so will the message that is displayed.

Note that no spaces are inserted when you use a replacement item—the $Item is replaced exactly as if you had
typed it from the keyboard!

To demonstrate this point further, if these assignments have been made…
Set Variable 0 "12" # $0 is now 12
Set Variable 1 "14" # $1 is now 14
Set Variable 2 "12,14" # $2 is now 12,14
Set Variable 3 "GotoXY 12,14" # $3 is now GotoXY 12,14

…then all of these statements are exactly identical when the script is run:
GotoXY 12,14
GotoXY $0,$1 # Same as typing GotoXY 12,14
GotoXY $2 # Same as typing GotoXY 12,14
$3 # Same as typing GotoXY 12,14

The following replacement items are available in Spectrum. NOTE: Capitalization of replacement items
does not matter—$RATE, $rate, $Rate, and $rAtE are all the same item.

Spectrum Scripting 9

$$
Gets replaced by a single $.
Example:

Display "The cost is $$12.34^M^J"

$^
Gets replaced by a caret (^).
Example:

Display "^LSee what $^L does?^M^J"

$#
must be replaced by a number from 0 to 9
Gets replaced by the contents of the specified variable (see the Set Variable command).
Example:

Set Variable 5 "Hello there!^M^J"
Display "$5"

$Length#
must be replaced by a number from 0 to 9
The length of the contents of variable number #.
Example:

Set Variable 6 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Display "There are $Length6 characters in '$6'.^M^J"

$FKey#
must be replaced by a number from 0 to 9
Gets replaced by the contents of the specified FKey (see the Set FKey command).
Example:

Set FKey 3 "a frequently-used phrase"
Display "FKey 3 is '$FKey3'. Try pressing OpenApple-3.M^J"

$Version
Gets replaced by the software’s name and version number (e.g. Spectrum 1.0).

$UserName
Gets replaced by the personalization that was entered when Spectrum was installed (the same name that is
displayed in the About dialog box).

$OnlineDisplay
Gets replaced by the current online display name, as displayed in the Online Display dialog box.

$DisplayVersion
Gets replaced by the version number of the currently-chosen online display.

$DateTimeStamp
Gets replaced by a ProDOS-compatible Filename that represents the current date and time (e.g.
D17Sep94T1040).

$Date
Gets replaced by the current date (e.g. 3 Nov 93, 17 Sep 94).

Spectrum Scripting 10

$Month
Gets replaced by the current month number (01-12).

$MonthText
Gets replaced by the current month abbreviation (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec).

$Day
Gets replaced by the current day number (01-31).

$DayText
Gets replaced by the current day abbreviation (Sun Mon Tue Wed Thu Fri Sat Sun).

$Year
Gets replaced by the current year number (00-99).

$Time
Gets replaced by the current clock time with no seconds or am/pm indication (e.g. 10:40).

$FullTime
Gets replaced by the current clock time with seconds and am/pm indication (e.g. 10:40:59 am).

$Hour
Gets replaced by the current hour (01-23).

$Minute
Gets replaced by the current minute (00-59).

$Second
Gets replaced by the current second (00-59).

$Rate
Gets replaced by the rate that was set by the Set Rate command.

$Timer
Gets replaced by the current timer value, in the form “00:01:32”.

$Cost
Gets replaced by the current cost of a call. The cost is calculated as $Rate divided by 60 times $Timer seconds,
and is shown with two decimal places (e.g. 12.34).
Example:

Set Rate 10; Set Timer On; Pause 10
Display "The current cost is $$$Cost^M^J"

Note that in this example the first $$ gets replaced by a single $, and $Cost gets replaced by the current cost.
Thus something like the following is displayed on the screen:

The current cost is $1.67

$Matched
Gets replaced by the item number that was matched in a WaitFor command.

Spectrum Scripting 11

$MatchString
Gets replaced by the string that was matched in a WaitFor command.
Example:

WaitFor String "cat" "dog"
Display "Got '$MatchString' (choice #$Matched).^M^J"

$ErrorMsg
Only meaningful in an “On Error Goto” routine
Gets replaced by the error message that would have been shown to the user if the script aborted normally.

$PTimer
Gets replaced by the current prompt timer value that was set by the Set PTimer command.

$CurrentX
Gets replaced by the current horizontal cursor position.

$CurrentY
Gets replaced by the current vertical cursor position.

$StoredX
Gets replaced by the horizontal cursor position that was stored by the Store XY command.

$StoredY
Gets replaced by the vertical cursor position that was stored by the Store XY command.

$PhoneEntries
Gets replaced by the number of phonebook entries listed in the Dial Number dialog box.

$ForValue#
must be replaced by a number from 0 to 9
The current counter value of loop number #.
Example:

For 7 11 37; Display "Value is $ForValue7.^M^J"; Next 7

$SFPrefix
Gets replaced by the current prefix 8 (usually the Foldername that was last used in one of Spectrum’s “Open” or
“Save” dialog boxes).

$Boot
Gets replaced by the Volumename of the disk you used to start the system.

$SpectrumPath
Gets replaced by the Foldername from which Spectrum was launched.

$SpectrumFile
Gets replaced by the Filename of Spectrum (it will be “Spectrum” unless you have renamed it on disk).

$ScriptPath
Gets replaced by the Foldername of the script that is currently running.

$ScriptFile
Gets replaced by the Filename of the script that is currently running.

Spectrum Scripting 12

$MenuPath
Gets replaced by the Foldername of the current menu file. This is the same folder that is searched when an
Option-keypress is used to run a script. The $MenuPath is set by loading a menu file from the desired folder
(see Load MenuFile). NOTE: $ScriptPath and $MenuPath do not necessarily indicate the same folder.
$ScriptPath indicates the folder of the currently-running script. If the user selected a script manually (by
choosing Run a Script from the Script menu), or if a script command was used to run a script, $ScriptPath could
be different from $MenuPath. If you write a script that accesses items that should be stored in the same folder
as your script, always use $ScriptPath.

$MenuFile
Gets replaced by the Filename of the current menu file.

$LogonFile
Gets replaced by the Filename of the script (if any) that is attached to a phonebook entry. Valid only after a Dial
Entry or Dial Service command.

$FileXferPath
Gets replaced by the Foldername used for file transfers (set by the user in the File Transfer dialog on the
Settings menu, or by the Set FileXferPath command).

$AutoSavePath
Gets replaced by the Foldername where the capture buffer will be saved automatically (see Set AutoSave).

$LastPath
Gets replaced by the Foldername of the last file that was loaded, saved, or sent.

$FrontmostApp
Gets replaced by the FoldernameFilename of the frontmost application. If $FrontmostApp is equal to
$SpectrumPath$SpectrumFile then Spectrum is the foreground application, otherwise The Manager is active
and Spectrum is in the background.

Color Values
Colors are numbered from 0 to 15. The following replacement items are available to simplify commands that use
a color value:

$Black! 0 $DarkGreen! 8

$Blue! 1 $Aqua! 9

$Brown! 2 $BrightGreen! 10

$Gray1! 3 $PaleGreen! 11

$Red! 4 $Gray2! 12

$Purple! 5 $Periwinkle! 13

$Orange! 6 $Yellow! 14

$Pink! 7 $White! 15

Spectrum Scripting 13

Parameters
When you use a command there are usually additional “parameters” you must specify so that the command
knows exactly what to do. For example, in the statement Pause 5, “Pause” is the command and “5” is a
parameter that tells the command how long to pause.

In this manual, command parameters are displayed in italics so you can see exactly what part of the command
you may need to complete. Study this partial example of a command description:

! Pause Value
! Value is optional; if used it can be from 0 to 65535

On the first line the required part of the command is in boldface and parameters you might supply are in italics.
The second line contains special notes about the parameter (it tells you that you don’t have to specify a value,
but if you do that it must be a number from 0 to 65535).

There are several parameters that are commonly used. Those common parameters are not redefined or noted
in a command’s description unless further explanation is required.

The common parameter types which are described in this section are:
•! VarNum
•! Value
•! Character
•! String
•! Volumename, Foldername, and Filename
•! Label
•! Statement

VarNum
Variables are used to store information in memory. Ten variables are available, represented by the numbers 0
through 9.

Wherever a VarNum parameter is specified you can use one of the following:
•! A number from 0 through 9
•! Any replacement item that results in a number from 0 through 9

Value
A Value is a positive integer (no negative numbers and no fractions or decimals). The exact restriction for a
Value parameter depends upon the command, so it is noted in each command’s description.

Wherever a Value parameter is specified you can use one of the following:
•! A number (4, 2, 7, etc.)
•! A string that represents a number (“4”, “2”, “7”, etc.)
•! Any replacement item that results in a Value

Spectrum Scripting 14

Character
A Character is any single character available on the Apple IIgs.

Wherever a Character parameter is specified you can use one of the following:
•! A single character, with or without quote delimitation marks (A, g, 7, “R”, “k”, “3”, “^M”, “^J”)
•! A value—without the quote delimitation marks—corresponding to the desired character’s ASCII code.

The value can be specified as a decimal number (10 through 255 only; 0 through 9 would be considered
a single character) or as a hexadecimal value ($00 through $FF). NOTE: To specify a hexadecimal value
you must use $$xx (as in “Set Quote $$22”).

•! Any replacement item that results in a Character
Examples:

Set Quote \ or Set Quote "\"
Set Quote 92 or Set Quote "92"
Set Quote $$5C or Set Quote "$$5C"

Note the use of two dollar signs to indicate a hexadecimal number. Remember, this is required because a single
$ indicates a “replacement item”…when Spectrum first expands the Set Quote $$5C command, the $$ gets
replaced by the single $, so Spectrum actually sees $5C.

String
A String is composed of 0 to 128 Characters.

When used in a script, strings should be enclosed in delimitation marks (they are required if the string contains
spaces; otherwise the marks are optional). NOTE: The “delimitation mark” is usually the double quote (") mark.
Although the string delimitation mark can be changed by a script, the examples presented in this manual all use
the standard double quote mark.

Wherever a String parameter is needed you can use one of the following:
•! A single character, with or without quote delimitation marks (A, g, 7, “R”, “k”, “3”, “^M”, “^J”)
•! A word, with or without quote delimitation marks (dog, CAT, “house”, “Bread”)
•! Two or more words within quote delimitation marks (“wild dog”, “Pretty blue cat^M^J”)
•! An empty string (""), which has zero characters
•! Any replacement item that results in a String

Volumename, Foldername, and Filename
Volumename: The name of a disk (it does not include any folder or file names). For example:

:Hard:
:Macintosh Disk:

Foldername: Either just the name of a disk or the name of a disk plus the names of one or more folders (or
directories) on that disk. For example:

:Hard:
:Hard:Spectrum:Spectrum.Script:
:Macintosh Disk:Files to send/receive:

Filename: The name of a file (it does not include a Volumename or Foldername). For example:
Capture.File
Today’s Email

Spectrum Scripting 15

Remember these important notes about pathnames:
•! Always include pathnames in the string delimiter mark (normally the double-quote mark). Although the

marks are optional if a pathname has no spaces in it, spaces are entirely possible when using
AppleShare or HFS disks. If you don’t include the string delimiter marks, a script that works on a ProDOS
disk could fail if it is used on an HFS disk.

•! Always use colons (:) at the beginning of a Volumename, and to separate the names of each folder in a
Foldername. Although Spectrum allows the old ProDOS-style “/” indicator, it is better to use the GS/OS-
style “:” indicator.

•! Wherever a Volumename, Foldername, or Filename is needed you can use any replacement item that
results in the proper parameter.

•! Wherever a Volumename or Foldername is needed you can use a GS/OS prefix number if it is set
correctly. See the Set GSPrefix command for more information.

•! Wherever a FoldernameFilename parameter is indicated you can omit the Foldername if prefix 8 is set to
the proper folder. NOTE: It is safer to always include the desired Foldername because prefix 8 can be
changed by the user at almost any time.

Label
Wherever a Label is needed you must specify a label that is defined somewhere in your script.

To define a label in your script, type the comment character (#) at the beginning of a line, press the Spacebar,
then type a word that will be the label. If you also want to add a comment, press the Spacebar then type the
comment.

Look at the following examples in the left column to see if you can determine which items are valid labels. The
right column shows the correct answer and reason for each item:

What is a label? What (the first word after the # at the
beginning of the line)

Say_Hello Say_Hello (the first word after the # at the
beginning of the line)

Display "Bye!" # The End (no label; # is not at the beginning of the
line)

AskQuestion -- Asks
the user a question

AskQuestion (the first word after the # at
the beginning of the line)

AskQuestion--Asks the
user a question

AskQuestion--Asks (the first word after
the # at the beginning of the line)

WhatLabel?ThisOne! WhatLabel?ThisOne! (the first word after
the # at the beginning of the line)

Statement
Wherever a Statement is needed you can insert any valid Spectrum command, including multiple commands
separated by semicolons. You can even use any replacement item that results in a Statement.

Script Commands 16

Script Commands
This section describes every Spectrum script command. The function of each command is explained, but in-
depth descriptions from the Spectrum Reference manual are not repeated here. For example, the Set Baud
command states that it controls the port setting’s baud rate, but it does not explain what baud rate is or how it
affects telecommunications. For that information, refer to the Spectrum Program Manual.

Each command is described in the following format:

! Pause Value
" Value is optional; if used it can be from 0 to 65535
! Pauses script execution for Value seconds. A value of 0 pauses

forever; if no value is given there is a one second pause.
" Example:
" Display "Hold your breath..."
" Pause 5; Display "^Gbreathe normally now!^M^J"

The first line displays the required parts of the command in boldface and parameters that you might supply in
italics. In the sample above, Pause is the command and Value is the only parameter.

If a parameter needs explanation or clarification, it appears below the command name. In the sample above, it is
clarified that Value is optional, but if specified it must be a number from 0 to 65535.

Following these items is a description of the command as well as any other notes of interest. From the sample
above we now know that Pause will cause a delay of Value seconds, and we know what happens if no value is
specified, or if a value of 0 is used.

An example is often provided to clarify and spark ideas (they are not necessarily useful, as the example above
illustrates).

Script Commands

Script Development 17

Script Development
Set Debug State
State can be Screen, Scrollback, or Off
Helps you trace exactly what is happening when a script is run so you can detect errors or omissions. Each
script statement is displayed or recorded after all replacements have been made, just prior to executing the
expanded statement.
Screen: Statements are displayed on the screen. In some online displays the commands are shown in inverse
text to help separate them from the rest of the screen. This option is useful for short scripts that display very little
on the screen. It can be used for longer scripts, but the displayed statements may go by too quickly to effectively
trace what is happening.
Scrollback: Statements are placed into the scrollback buffer. This option is usually more useful than Screen
because it provides a written record of all the statements that were executed, as well as showing when they
were executed.
Off: When debugging is off, scripts execute with no debug information being displayed or recorded.
Example:

Clear Scrollback; Set Debug Scrollback
Display "How^M^Jdoes^M^Jthis^M^Jlook?^M^J"
Set Debug Off

Clear Scrollback
Clears the scrollback buffer, which is sometimes useful during debugging (especially when sending debug
commands to the scrollback buffer). NOTE: This command should never appear in a completed script!

Set ShowControls State
State can be Off or On
When on, control characters are displayed as ^letter, which is sometimes useful for debugging scripts. For
example, if you’re waiting for “Hello” but the host is transmitting “Hel^Tlo” you may not know why the script isn’t
working; by turning on ShowControls you will be able to see the problem.
For this command to be most useful, create and select character filter tables that do no key translations.
NOTE: Some online displays do not support this command. This command should never appear in a completed
script!

Fundamental Commands 18

Fundamental Commands
Display "String"
Displays String on the screen. If you also want to send the string out to the port, use the Transmit command.
No characters are added automatically by the Display command. If you want to display a word followed by a
carriage return you must include the carriage return in the Display command (see the example below).
Because some online displays do not automatically add a linefeed (^J) when a carriage return (^M) appears, you
should always display the “^M^J” combination to ensure the cursor is at the first position of the next line.
Displays that do automatically linefeed will ignore the first ^J after a ^M.
Example:

Display "^LThis is "
Display "a test.^M^J"
Display "^GSee how these^M^Jlines look?^M^J"

The following control characters behave in a standard way when used in a Display command:

NOTE: To insure that you are at the beginning of the next line, always display the combination “^M^J”.
NOTE: You cannot directly display “^^” followed by two letters, but you can do it with the following script:

Set Token \ # change the control character token to be \
Display "\^!*" # same as GotoXY 1,10
Set Token ^ # change token back to ^

Key Result
^E Show the cursor

^F Hide the cursor

^G Play the system beep sound

^H Move the cursor one character to the left

^J Move the cursor down one line

^K Clear the screen from the cursor on down, without changing the
cursor position

^L Clear the display and move the cursor to the top-left of the display

^M Move the cursor all the way to the left of the current line (and
sometimes down one line too)

^Y Move the cursor to the top-left of the display without clearing the
display

^] Clear from the cursor to the end of the line

^^ GotoXY (the ASCII value of the next two characters are interpreted
as X+32 and Y+32)

Fundamental Commands 19

The following additional control characters are not supported in all online displays, but if supported they behave
as described:

NOTE: Displays that support MouseText have different requirements. To ensure MouseText is on, always display
the combination “^O^[“; to ensure MouseText is off, always display the combination “^X^N”.

DisplayRecord "String"
Displays String on the screen and records it into the capture buffer (even if the screen and buffer have been
turned off). If you also want to send the string out to the port, use the Transmit command.
Example:

DisplayRecord "^M^J[Begin online session on $Date at $FullTime.]^M^J"

In the example, note that the ^M^J combination is there for the benefit of the “Display” part of the command…
recording to the capture buffer does not need a linefeed.

Record "String"
Records String directly into the capture buffer (even if the buffer has been turned off). If you also want to send
the string out to the port, use the Transmit command.
Example:

Record "^M[Begin online session on $Date at $FullTime.]^M"

In the example, note that only ^M is used…the capture buffer does not need a linefeed.

Transmit "String"
Shortcut: Xmit "String"
Sends String directly out to the port. If the port is set for half duplex the string is also displayed on the screen;
with full duplex the string is displayed only if the host echoes it.
No characters are added automatically by the Transmit command. If you want to transmit a word followed by a
carriage return you must include the carriage return in the Transmit command (see the example).
Example:

Transmit "MyPassword^M"

Break
Sends a “break” signal to the port.

Key Result
^I Move the cursor right, to the next “tab stop” (usually at positions 0,

8, 16, 24, and so on)

^N Normal text (turns off Inverse, and sometimes MouseText too)

^O Inverse text

^V Scroll the screen down one line without changing the cursor
position

^W Scroll the screen up one line without changing the cursor position

^X Turn off MouseText (and sometimes Inverse too)

^[Turn on MouseText (uppercase letters A-Z are displayed as
“MouseText” characters)

^\ Move the cursor right one character

^_ Move the cursor up one line

^Z Clear the entire line that the cursor is on

Settings 20

Load MenuFile "FoldernameFilename"
Loads the specified file as if the user selected it by choosing Load Menu File from the Script menu.

Clear MenuFile
Removes any script names from the bottom of the Scripts menu, and resets the menu path to the
Spectrum.Script folder.

Set FKey Value "String"
Value can be from 0 to 9
Sets an “FKey” to the specified String. From then on pressing # (where # is a number from 0 to 9) will type the
string just as if you typed it from the keyboard (if a display window is open and in front; it does not work in the
Editor, in NDAs, etc.).
The FKeys are available even after the script has stopped running, which makes them very useful for quickly
typing common phrases.
Example:

Set FKey 1 "For more Spectrum information contact:^M Seven Hills Software^M 2310
Oxford Road^M Tallahassee, FL 32304^M" # From now until Spectrum is quit (or another
Set FKey 1 is encountered) pressing OpenApple-1 will type the complete address when
the online display is open.

Settings
Save Settings
Saves Spectrum’s current settings to disk. Settings are also saved when Spectrum is quit (unless the user has
checked the “Don’t save settings” option in the Status dialog box).

Load Settings
Loads Spectrum’s settings from disk.

Store Settings
Remembers Spectrum’s settings in memory.
Every script command that controls a checkbox or popup menu in a Spectrum dialog box is affecting choices the
user has made. Whenever possible you should not permanently alter the user’s settings of those items. This
example shows one way to change settings without permanently affecting the user’s choices:

Store Settings # hold current settings in memory
Set AutoReceive OFF # turn autoreceive off during logon
Set Duplex FULL; Set Echo OFF # don't show logon information
...logon commands here...
Restore Settings # restore the AutoReceive, Duplex, and Echo settings to whatever they

were originally

Restore Settings
Restores from memory the previously-stored program settings.

Set SmartPaste State
Controls whether Spectrum’s built-in editor will use “smart” cutting and pasting. If you change this option, the
editor window must be closed (W) then re-opened (E) before the change takes effect.
With SmartPaste turned on, cutting and pasting will insert and delete spaces automatically in an effort maintain
the proper spacing between words. However, this option is normally turned off because it can be annoying when
editing scripts.

Settings 21

Port Settings
NOTE: The commands described in this section control settings related to the communications port.
Most commands affect options that the user can set in the Port Settings dialog box.

Set Baud Rate
Rate can be Default, 50, 75, 110, 135, 150, 300, 600, 1200, 1800, 2400, 3600, 4800, 7200, 9600, 19200, 38400, or 57600
Sets the “Baud Rate” option to the specified rate.

Set DFormat Format
Format can be 7E2, 7O2, 7N2, 7E1, 7O1, 7N1, 8E2, 8O2, 8N2, 8E1, 8O1, or 8N1
Sets the “Data Format” option to the specified data bits (7 or 8), parity (None, Even, or Odd), and stop bits (1 or
2).

Set Duplex DuplexKind
DuplexKind can be Half or Full
Controls the “Half Duplex” checkbox. With half duplex, outgoing data is displayed on the screen as it is
transmitted; with full duplex outgoing data is not displayed on the screen. Setting full duplex and setting the
screen off

Set Echo State
State can be Off or On
Controls the “Echo” checkbox. If echo is on, incoming characters are echoed back out to the port. NOTE: If Echo
is on and the host echoes characters back to you, you may find yourself in a loop with the same characters
constantly being echoed between the two systems. Turn echo off to stop the loop.
Also, commands which normally are displayed only on the screen will be sent out to the port (e.g. Get Line,
Show Catalog, Show File, etc.). NOTE: When echoing information out to the port, characters are not passed
through the keyboard filter (as they would be if they were sent using the Transmit command).

Set SendLFs State
State can be Off or On
Controls the “Send LFs” checkbox.

Set Handshake State
State can be Off or On
Controls the “H’ware Handshake” checkbox.

Set XonXoff State
State can be Off or On
Controls the “Xon/Xoff Flow” checkbox.

Set CharDelay Value
Value can be from 0 to 9
Controls the “Character Delay” value. Value is the delay in 1/60ths of a second (0 is no delay; 9 is a .15 second
delay).
The delay occurs after each character is sent out to the port and is used at all times except for non-text file
transfer protocols.

Set LineDelay Value
Value can be from 0 to 9
Controls the “Line Delay” value. Value is the delay in 16/60ths of a second (0 is no delay; 9 is a 2.4 second
delay).
The delay occurs after a Return character is sent out to the port and is used at all times except for non-text file
transfer protocols.

Settings 22

Set DCD State
State can be Off or On
Controls the “DCD Handshake” checkbox.

Set Port PortKind SlotNumber
PortKind can be IIGS or Slot
SlotNumber can be a number from 1 to 2 if PortKind is IIGS; from 1 to 7 if PortKind is Slot
Controls the port connection options:
IIGS: Indicates the connection should be through the serial port on the back of the IIgs computer. To specify the
Printer Port use 1 for SlotNumber; to specify the Modem Port use 2.
Slot: Indicates the connection should be through the card that is plugged into the specified slot.
Examples:

Set Port Slot 2 # a Super Serial Card in slot 2
Set Port Slot 4 # an AE DataLink in slot 4
Set Port IIGS 2 # the IIGS Modem Port

Online Display Settings
NOTE: The commands described in this section control settings related to the online display. Most
commands affect options that the user can set in the Online Display Settings dialog box.

Set OnlineDisplay "Display"
Display can be the name of any online display as it appears in the Online Display Settings dialog box
Selects and opens the specified online display. The Spectrum SHR Fast, Spectrum SHR Normal, and Spectrum
Text displays will always be available, but others can be added or removed by the user at any time. You can test
the Failed flag to see if the display was opened or not.
Example:

Set OnlineDisplay "ANSI"
If Failed Then Display "^LThis script requires the ANSI display, which could not be

opened.^M^J^J"; Stop Script

Close OnlineDisplay
Shortcut: Offline
Closes the current online display and stops script execution as if the Stop Script command was encountered.
Close OnlineDisplay is useful for ending a script that uses a custom display—the command will close the display
and return to the 640 mode desktop with Spectrum’s menu bar.
TIP: Use the Set OnlineDisplay command to select a different online display without causing the script to stop.

Set DeleteBack State
State can be Off or On
Controls the “Delete key = Backspace” checkbox. When on, pressing the delete key sends a backspace (^H,
ASCII $08). When off, pressing the delete key sends a true delete character (ASCII $7F).

Set LowASCII State
State can be Off or On
Controls the “Convert To Low ASCII” checkbox.

Set ScriptKeys State
State can be Off or On
Controls the “Recognize Script Keys” checkbox.

Settings 23

Set RemoveLFs State
State can be Off or On
When on, linefeed characters (^J, ASCII $0A) are not stored in the capture buffer or seen by scripts. This option
is usually on.

Set Sound State
State can be Off or On
Controls the “Sounds” checkbox.

Character Filter Settings
NOTE: The commands described in this section control settings related to the character filter. Most
commands affect options that the user can set in the Character Filter Settings dialog box.

Set DisplayFilter Value
Value can be from 0 to 16
Sets the Display Character Filter to the specified table number. Table 0 is “Default” (which uses the translation
setting specified in the General CDEV). Other table numbers correspond to tables that have been added using
the Character Filter Editor.

Set KeyFilter Value
Value can be from 0 to 16
Sets the Keyboard Character Filter to the specified table number. Table 0 is “Default” (which uses the translation
setting specified in the General CDEV). Other table numbers correspond to tables that have been added using
the Character Filter Editor.

Set Country Value
Value can be from 0 to 7
Sets the IIgs Control Panel’s Display Language and Keyboard Layout to the specified Value:

Set Country 0 # U.S.A. # @ [\] ` { | } ~
Set Country 1 # U.K. £ @ [\] ` { | } ~
Set Country 2 # French £ à ˙ ç § ` é ù è ¨
Set Country 3 # Danish # @ Æ Ø Â ` æ ø å ~
Set Country 4 # Spanish £ § ¡ Ñ ¿ ` ˙ ñ ç ~
Set Country 5 # Italian £ § ˙ ç é ù à ò è ì
Set Country 6 # German # § Ä Ö Ü ` ä ö ü ß
Set Country 7 # Swedish # @ Ä Ö Å ` ä ö å ~

This is useful for foreign services that use common character codes to display foreign characters. The Control
Panel’s Display Language and Keyboard Layout affect only the standard 40/80 column text displays…they do
not affect what you see on the Super Hires screen or on a printout.
If you frequently call a foreign service it would be better to create a Character Filter table that translated one
character into another and use a Super High Res online display. For example, a filter could translate:

$7B to $8E so an incoming { character would be changed to é, and
$8E to $7B so an outgoing é character would be changed to {

To view standard “option” characters on the Super High Res screen, the “Convert to low ASCII” online display
option must be off. However, characters intentionally converted to high ASCII characters using a filter table will
display correctly even if the “Convert to low ASCII” option is off.

Settings 24

File Transfer Settings
NOTE: The commands described in this section control settings related to file transfers. Most
commands affect options that the user can set in the File Transfer Settings dialog box.

Set FileXferPath "FoldernameFilename"
Filename is optional
Sets the default folder and filename for file transfers. “Auto Receive” transfers will be received to or sent from
this folder. NOTE: If your script is receiving a file and does not care where it goes, set the prefix to
$FileXferPath.

Set PadCR State
State can be Off or On
Controls the “Pad Empty Lines” checkbox. Some hosts use a blank line to indicate the end of a document. When
this option is on, blank lines in the file being sent are padded with a space.
After a file has been sent with this option on, you may need to Transmit “^M” to finish the transfer because CRs
within the file have been padded.

Set Prompt Character
Establishes the prompt character used when sending text files, and turns on prompting. If Character is ^@ or ^M
then prompting is turned off.

Set PTimer Value
Value can be from 0 to 256
The value indicates how many seconds Spectrum will wait for the prompt character during a “prompted” text file
upload. If the prompt is not received within Value seconds after sending a line of text, the upload continues.

Set ULTextShow State
State can be Off or On
Controls the “Display text and save to buffer” checkbox in the Send Text File dialog box. If this option is on when
a text file is uploaded, the text is displayed on the screen and captured just as if it was being typed at the
keyboard. If this option is off, the file transfer dialog box appears while the file is being sent.

Set AutoResume State
State can be Off or On
Controls the “Resume Transfers” checkbox. When on, interrupted/aborted CIS B+ and Zmodem transfers will be
resumed if possible.

Set AutoReceive State
State can be Off or On
Controls the “Auto Receive” checkbox. When on, Spectrum watches incoming data to see if the host wants to
send a file via CIS B+ or Zmodem.
Because CIS B+ transfers are started by a single character (^E), it is fairly easy to trigger a false CIS B+
transfer. To prevent false triggers you could write a script that turns auto receive off and on when necessary.

Set BinaryII State
State can be Downloads, Uploads, Off, or On
Controls the “Binary II Down” and “Binary II Up” checkboxes.
Downloads: If a downloaded file has a Binary II wrapper, the wrapper will be removed from the file as it is
downloaded. This option also turns off the “Resume Transfers” checkbox.
Uploads: If a file doesn’t already have a Binary II wrapper, one will be added as the file is uploaded.
Off: Turns off both checkboxes.
On: Turns on both checkboxes, and turns off the “Resume Transfers” checkbox.

Settings 25

Set SendAhead State
Controls the “Packet Send Ahead” checkbox. If this option is on then CIS B+ and Zmodem transfers will not wait
for an acknowledgment of receipt of the previous packet before sending another packet. This can decrease file
transfer time, but should be used only with a good connection.

Set ProDOSX State
State can be Off or On
Controls the “ProDOS Xmodem” checkbox. When on, extra information is transmitted about a ProDOS file (the
file’s length, file type, creation/modification date, etc.). Useful mainly when sending a file from one Apple to
another or with systems that support this feature.

Set RelaxedXfers State
State can be Off or On
Triples the normal wait times for all protocol transfers during this session of using Spectrum (the normal wait
times are re-established the next time Spectrum is started).
This command is useful when connected to a host that is slow to respond during file transfers. If you find
transfers are getting aborted due to timeout errors, this command can help (it cannot help if the problem is line
noise).

Set Turbo State
State can be Off or On
Sets “Turbo” mode for Ymodem file transfers. When off, Receive Ymodem uses regular Ymodem protocol; when
on it uses Ymodem-g. Ymodem-g avoids the typical delays between transmittal of each block, but must be used
only with a good connection because if a single bad packet is encountered the whole transfer is cancelled and
must be restarted from scratch.

Set ZErrors Value
Value can be from 0 to 65536
Sets the number of errors that will be allowed during a Zmodem transfer. The transfer will be aborted if more
than Value number of errors occur.

Dialing 26

Dialing
NOTE: If you’re writing a script that will be attached to a phonebook entry in the Dial Number dialog, or that uses
one of the Dial commands, be aware that the script should not wait for things like “CONNECT” or “BUSY”—
Spectrum’s dialing routines are complete (if they do not fail then you are connected).

Set ConnectWait Value
Value can be from 1 to 999 seconds
Specifies how long to wait for a connection before cancelling the dial sequence.
Example:

Set ConnectWait 60

Get PhoneEntry Value VarNum
Value can be a number from 1 to $PhoneEntries
Extracts the name of the specified phonebook entry and stores it in the specified variable.

Dial String "String"
Prepares the given number for dialing by adding “ATDT” or “ATDP” if needed, then dials the number. Because
scripts have greater control over redialing, this command does not redial automatically.
You can check the Failed flag to determine whether or not a connection was made. NOTE: If the user pressed
the ESC key to cancel dialing, the Keyboard value will be ^[(ESC).
Example:

Dial String "555-1234"
If NOT Failed Then Display "[CONNECTED AT $Time ON $Date]^M^J"; Stop Script
If Keyboard "^[" Then Display "Changed your mind, eh?^M^J"

Dial Service "PhonebookEntry"
PhonebookEntry can be the name of any phonebook entry that appears in the Dial Number dialog box
Extracts the specified entry, sets the port settings, then dials the entry’s phone number. Because scripts have
greater control over redialing, this command does not redial automatically.
You can check the Failed flag to determine whether or not a connection was made. NOTE: If the user pressed
the ESC key to cancel dialing, the Keyboard value will be ^[(ESC).
If the phonebook entry has a script attached to it, that script is not automatically run. Instead, the $LogonFile
replacement item is set to the name of the attached script. This way your script can decide whether to use an
entry just for connecting to a service, or it can connect and run the script attached to the phonebook entry (see
the example below).
Example:

Dial Service "GEnie"; If Failed Then Stop Script
Set SFPrefix "$MenuPath" # This is the folder that the last menu file was loaded from,

which is where the logon script should be located
If Exists "$LogonFile" Then Run "$LogonFile" # If the logon file doesn't exist then no

error appears

Dial Entry Value
Value can be a number from 1 to $PhoneEntries
Dials phonebook entry number Value exactly like the Dial Service command. The Dial Entry command is useful
for automatically dialing one entry after another until one connects. For dialing a specific service the Dial Service
command should be used because phonebook entries can change position whenever an entry is added or
deleted.

Dialing 27

Example:
If Equal "$PhoneEntries" "0" Then Stop Script # because there are no entries to dial
For 5 1 $PhoneEntries; Get PhoneEntry $ForValue5 3
Display "Trying entry number $ForValue5 ($3)...^M^J"; Dial Entry $ForValue5; If Not

Failed Then Clear For 5; Display "^LConnected to $3!^M^J"; Stop Script
Next 5; Display "Couldn't connect.^M^J"; Stop Script

Hangup
Hangs up the modem without asking for confirmation.

Set Password Value "String"
Value can be from 0 to 9
Encrypts String and saves it with Spectrum. The stored password may be transmitted using the Send Password
command.
The following table shows the recommended use for the password values:

0! The response given at GEnie’s “U#=” prompt
1! The response given at CompuServe’s “Password” prompt

By using stored passwords and the Send Password command, generic scripts can be written and posted online
without having to remove your private password information.

Send Password Value
Value can be from 0 to 9
Decrypts the stored password and sends it out to the port with no screen echo (unless the host echoes it).

Set Rate Value
Value can be from 0 to 65535
Sets the value used to calculate the $Cost replacement item. The value should be the cents (or pence, kopeks,
etc.) per minute. For example, if a service costs $6.00 per hour, the cost per minute is 10 cents (6.00*100/60).

Set Timer State
State can be Off or On
Turns the timer on and off. The current timer can be displayed using the $Timer replacement item. A charge
based on the timer can be calculated by first setting the rate (Set Rate) then displaying the $Cost replacement
item.

Clear Timer
Clears the timer back to 00:00:00; it does not turn the timer on or off.

Play Sound "Name"
Plays the specified sound at the volume specified in the Sounds CDEV. NOTE: In order to play sounds, the
Sounds CDEV must be installed and active, and the “Sounds” checkbox must be on in the Online Display
Settings dialog box.
Name is case-sensitive (“welcome” and “Welcome” are not the same sound). The Failed flag is set if the
specified sound was not found (Spectrum will play sounds in the Spectrum.Sounds file, or in any of the sound
files found in the System:Sounds folder). NOTE: System 6.0.0 contains a bug that sometimes prevents the
correct sound from being played (e.g. playing “You Have Mail (HAL)” will actually play “You Have Mail”). System
6.0.1 works correctly.
To avoid one sound cutting another sound short, Spectrum waits until no sound is playing before it asks the
Sounds CDEV to play the requested sound. This means that sounds can be “combined” by playing one right
after another.
Two sound files come with Spectrum: SP.Snds.Main and SP.Snds.Aux.

Dialing 28

The sounds in the SP.Snds.Main.Snds.Main; file are played automatically by Spectrum at the appropriate time:

The sounds in the SP.Snds.Aux.Snds.Aux; file are not played by Spectrum, but scripts can play them when
appropriate:

Example:
NOTE: Although something like this is possible, it can get annoying if overused...
Get File 2 0; If Failed Then Stop Script
Play Sound "Loading"; Play Sound "File"; Load ScriptEditor "$0"
Apply LowASCII; Apply RemoveControls; Apply LFsToCRs; Apply Format 3
Play Sound "Saving"; Play Sound "File"; Save ScriptEditor "$0"; Clear ScriptEditor
Play Sound "Sending A File"; Play Sound "Via Text"; Send "$0" Text

Spectrum Welcome File-Launch File-Quit

Phone-Connected Phone-No Connection

Phone-Hangup

Send/Receive-Good Send/Receive-Bad

Chatline Warning SystemBeep

Saving Screen Saving Screen Failed

Key-Return Key-Spacebar Key-Any

Welcome Goodbye

You Have Mail You Have Mail (HAL)

Reading Mail Sending Mail

Receiving Files Sending Files

Via Text Via Xmodem

Via Ymodem Via Zmodem Via CIS B+

Entering Forum Entering Roundtable

Reading Messages Posting Replies

Loading Saving

Capture Buffer File

Cleared On Off

Script and Program Control 29

Script and Program Control
Stop Script
Stops running the current script.
Example:

Display "Thanks for using this script!^M^J"
Stop Script
Display "You won't see this.^M^J"

Pause Value
Value is optional; if used it can be from 0 to 65535
<<This command is used as an example in the “Parameters” and “Commands” sections above—any
changes here should be copied to those sections!>>
Pauses script execution for Value seconds. A value of 0 pauses forever; if no value is given there is a one
second pause.
Example:

Display "Hold your breath..."
Pause 5; Display "^Gbreathe normally now!^M^J"

WaitFor Time "Time"
Waits until the specified time then continues executing the script. The time must be specified in 24-hour format
(e.g. “19:40”, “12:34”).
Example:

WaitFor Time "19:40"; Display "It is now 7:40pm!^M^J"

Run "FoldernameFilename"
Runs the specified script, just as if the user chose Run a Script from the Script menu, then selected the
FoldernameFilename script. Whenever any script is run, the following items are set to a known state:

Set Quote "
Set Token ^
Set CaseSensitive OFF
Set Timeout 0
On Escape Goto "" # Spectrum handles an Escape
On Error Goto "" # Spectrum handles errors
Set Turbo OFF
Set ScreenBlank OFF
Set Screen ON
Set Debug OFF
Set Rate 0
Set Flush ON
Set ULCapture OFF
- ALSO:
- All ten variables ($0-$9) are cleared to ""
- The "If Keyboard" value is cleared
- The Failed flag is cleared to indicate "not failed"
- $Matched is cleared to 0

- $MatchString is cleared to ""
- All files opened by the previous script are closed (including any ScriptEditor file)

Example:
Display "Set up <C>ompuServe or <G>Enie? "; WaitFor Keyboard
If Keyboard C Then Run "$MenuPathCIS.Setup"
If Keyboard G Then Run "$MenuPathGEnie.Setup"
Display "No system with that letter.^M^J"; Stop Script

Script and Program Control 30

Chain "FoldernameFilename"
Passes control (or “Chains”) to the specified script, preserving all the settings that are normally reset when a
script is Run (see above).
Example:
At the beginning of a script named “Chain.1”:

Display "Do you want to <D>elete or <S>how a file? "
KeyLoop1
WaitFor Keyboard
If Keyboard D Then Set Var 9 "Delete"; Chain "Chain.2"
If Keyboard S Then Set Var 9 "Show"; Chain "Chain.2"
Display "^G"; Goto KeyLoop1

At the beginning of the script named “Chain.2”:
Display "^M^J^JNow in the 'Chain.2' script.^M^J^J"
If Null 9 Goto NotChained # if variable number 9 is empty then this script was RUN,

otherwise the script was CHAINed to and variable number 9 has the name of a label in
this file

Goto $9

NotChained
Display "This script was RUN (not CHAINed to).^M^J"; Stop Script

Delete
Display "This script was CHAINed to, and you wanted to DELETE a file.^M^J"; Stop Script

Show
Display "This script was CHAINed to, and you wanted to SHOW a file.^M^J"; Stop Script

Launch "FoldernameFilename"
Spectrum hangs up the modem (see “Hangup”) then quits to the specified application. Quitting that application
will restart Spectrum. NOTE: If The Manager is active Spectrum will not be quit; it will just attempt to launch (or
activate) the specified application.
The user is not asked if he wants to save the capture buffer, but a Save Buffer command will be issued
automatically if the AutoSaveBuffer option is on.
Example:

Display "Launch <G>raphicWriter III? "
WaitFor Keyboard
If Keyboard Y Then Launch ":Hard:GWIII:GraphicWriter"

Exit "FoldernameFilename"
FoldernameFilename is optional; if given it must reference a IIgs application
Spectrum attempts to leave the communication port active (if you are online you should not be disconnected),
then…

If FoldernameFilename is not given then Spectrum quits to the application that launched it. Quitting that
application will not restart Spectrum.

If FoldernameFilename is given then Spectrum quits to that application. Quitting that application will restart
Spectrum. NOTE: If The Manager is active Spectrum will not be quit; it will just attempt to launch (or
activate) the specified application.

In either case the user is not asked if he wants to save the capture buffer, but a Save Buffer command will be
issued automatically if the AutoSaveBuffer option is on.
Example:

Display "^GWARNING: Exiting does not hang up the line; be sure you are not connected to
an expensive service!^M^J"

Display "Exit to <G>raphicWriter III or <F>ont Factory GS? "
WaitFor Keyboard
If Keyboard G Then Exit ":Hard:GWIII:GraphicWriter"

Variables 31

If Keyboard F Then Exit ":Hard:FFGS:Font.Factory.GS"

Quit "FoldernameFilename"
FoldernameFilename is optional; if given it must reference a IIgs application
Spectrum hangs up the modem (see “Hangup”) then…

If FoldernameFilename is not given then Spectrum quits to the application that launched it. Quitting that
application will not restart Spectrum.

If FoldernameFilename is given then Spectrum quits to that application. Quitting that application will not
restart Spectrum.

In either case the user is not asked if he wants to save the capture buffer, but a Save Buffer command will be
issued automatically if the AutoSaveBuffer option is on.

Variables
Set Variable VarNum "String"
Shortcut: Set Var VarNum "String"
Set the contents of the specified variable number to be the given string.
Example:

Set Variable 0 "Spectrum is cool!^M^J"
Display "$0$0$0$0"

Store Variables
Shortcut: Store Vars
Stores the current values of the ten numbered variables.

Restore Variables
Shortcut: Restore Vars
Restores the ten numbered variables to the previously-stored values.

Clear Variables
Shortcut: Clear Vars
Clears the ten numbered variables to "".

Concatenate "String1" "String2" VarNum
Appends String2 onto the end of String1 and places the result into the specified variable number. If the length of
String1 and String2 is greater than 128 characters, the result is truncated to 128 characters and the Failed flag
is set.
Example:

Display "What adjective describes Spectrum? "
Get Line 0
Concatenate "Spectrum is " "$0" 1
Concatenate "$1" "!^M^J" 1
Display "$1$1$1$1"

NOTE: Only a single Concatenate command was really needed; we used two steps to illustrate that it is
perfectly acceptable to specify a variable for one of the strings, then to store the result back into that same
variable.

Position "String" "ToFindString" Start VarNum
Start can be from 1 to 128
Sets variable number VarNum to indicate the character position at which ToFindString is found in String. Start
indicates which character to start searching from. If Start is 0, or if Start is greater than the length of String, or if
ToFindString is not found in String, then $VarNum is set to 0.

Variables 32

Example:
Display "Type your first and last name: "; Get Line 0
Position "$0" " " 1 1 # looks for a space starting at character 1; stores the position

in $1
If Equal "$1" "0" Then Display "You didn't enter a space between your first and last

name."; Stop Script

Substring "String" Start Length VarNum
Start can be from 1 to 128
Length can be from 1 to 128
Sets $VarNum to the specified portion of String. If Start is 0, or if Start is greater than the length of String, then
$VarNum is set to "". If Length is greater than the length of String then $VarNum contains the characters from
Start to the last character of String.
Example:

Display "Type your first and last name: "; Get Line 0
Position "$0" " " 1 1 # looks for a space starting at character 1; stores the position

in $1
If Equal "$1" "0" Then Display "You didn't enter a space between your first and last

name."; Stop Script
Decrement 1 # the character before the space
Substring "$0" 1 $1 2 # everything to the left of the space is put into $2
Increment 1; Increment 1 # the character after the space
Substring "$0" $1 128 3 # everything to the right of the space is put into $3
Display "^M^JYour first name is: $2^M^J"; Display "Your last name is: $3^M^J"; Stop

Script

Increment VarNum
Shortcut: INC VarNum
Increments the contents of the specified variable number by 1. The variable must contain a valid number in
order for this command to work. The number will not increment above 4,294,967,295.
Example:

Set Variable 0 "12345"
Display "Starting at: $0^M^J"
Increment 0
INC 0 # the shortcut version
Display " Result is: $0^M^J"

Decrement VarNum
Shortcut: DEC VarNum
Decrements the contents of the specified variable number by 1. The variable must contain a valid number in
order for this command to work. The number will not decrement below 0.
Example:

Set Variable 0 "12345"
Display "Starting at: $0^M^J"
Decrement 0
DEC 0 # the shortcut version
Display " Result is: $0^M^J"

Get Random Value VarNum
Value can be from 1 to 65535
Places a random number from 1 to Value into the specified variable number.

Add Value1 Value2 VarNum
Adds Value1 to Value2 and places the result into the specified variable number.

Script Menu 33

Subtract Value1 Value2 VarNum
Subtracts Value2 from Value1 and places the result into the specified variable number.

Multiply Value1 Value2 VarNum
Multiplies Value1 by Value2 and places the result into the specified variable number.

Divide Value1 Value2 VarNum
Divides Value1 by Value2 and places the result into the specified variable number. NOTE: Because values are
positive integers, any remainder from the division is thrown away (e.g. the result of 5 divided by 2 is 2, not 2.5).
Example:

Set Variable 0 "100"; Set Variable 1 "25"
Add $0 $1 2; Display "$0+$1=$2^M^J"
Subtract $0 $1 2; Display "$0-$1=$2^M^J"
Multiply $0 $1 2; Display "$0*$1=$2^M^J"
Divide $0 $1 2; Display "$0/$1=$2^M^J"

Compare Value1 Value2 VarNum
Compares Value1 to Value2 and places the result into the specified variable number (1 means Value1<Value2; 2
means Value1=Value2; 3 means Value1>Value2)
Example:

Get Random 100 0
Display "^LI picked a number from 1-100. Now you try to guess what it is!^M^J^J"
GuessLoop
Display "What is your guess? "; Get Line 1
Compare $1 $0 2 # compare the guess to the random number
On $2 GotoNext Less, Equal, More
Less
Display "^M^JToo low!^M^J^J"; Goto GuessLoop
Equal
Display "^G^M^JYou guessed right!^M^J^J^G"; Stop Script
More
Display "^M^JToo high!^M^J^J"; Goto GuessLoop

Swap VarNum1 VarNum2
Swaps the contents of the two variables.
Example:

Set Var 1 "One"; Set Var 2 "Two"
Swap 1 2; Display "1=$1 2=$2^M^J^J"

Getting Input 34

Getting Input
Set Timeout Value
Value can be from 0 to 65535
When waiting for input using any of the “Getting Input” commands, Spectrum waits for Value seconds before it
gives up and continues executing the script. If Value is 0 Spectrum will wait forever.
If you use a timeout for an input command, test to see if the input “failed” (timed out) before using the input.
Example:

Display "What is your favorite letter? "
Set Timeout 5; WaitFor Keyboard
If Failed Then Display "^M^JApparently you can't decide what your favorite is!^M^J";

Stop Script
Display "^M^JYes, '$MatchString' is a nice letter!^M^J"; Stop Script

Set KeyLock State
State can be Off or On
Locks out keyboard entry that would be sent directly to the port, and prevents keyboard input to the Get Key and
Get Line commands. Turning this option on prevents the user from interfering with the data that a script is
transmitting or waiting for.

WaitFor Keyboard
Waits for the next keypress (Spectrum processes characters coming in from the port, but this command ignores
them). When a keypress is received the Failed flag is cleared, $MatchString is set to the key that was pressed,
and $Matched is set to 1. You can test for which key was pressed by using the If Keyboard command.
If a timeout was used and time ran out, the Failed flag is set, $MatchString is cleared, and $Matched is set to 0.

WaitFor String "String1" "String2" … "String7" "String8"
At least one string is required; up to eight may be specified. Commas are optional between each string.
Spectrum processes characters coming in from the port and watches for the specified string (the CaseSensitive
setting affects the comparison). If one of the strings is found then the Failed flag is cleared, $MatchString is set
to the string that was found, and $Matched is a number that indicates which string was matched.
If a timeout was used and time ran out, the Failed flag is set, $MatchString is cleared, and $Matched is set to 0.
Example:

Set Timeout 15; Set CaseSensitive Off
Transmit "ATDT555-1234^M"
WaitFor String "Connect" "Busy" "No Carrier"
If Failed Then Stop Script
On $Matched Goto Logon, Redial, Redial

Get Key VarNum
Gets one character from the port or the keyboard (if KeyLock is off) then stores it into the specified variable.
If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Get Line VarNum
Accepts up to 128 characters from the port or the keyboard (if KeyLock is Off). When the Return key is pressed
the line is stored into the specified variable.
If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Input Keyboard
Waits for the next keypress. If Flush is Off then characters coming in from the port are not processed; if Flush is
On then incoming characters are processed, but this command ignores them (it watches the keyboard only).

Getting Input 35

When a keypress is received the Failed flag is cleared, $MatchString is set to the key that was pressed, and
$Matched is set to 1. You can test for which key was pressed by using the If Keyboard command.
If a timeout was used and time ran out, the Failed flag is set, $MatchString is cleared, and $Matched is set to 0.

Input Key VarNum
Gets one character from the keyboard and stores it into the specified variable. If Flush is Off then characters
coming in from the port are not processed; if Flush is On then incoming characters are processed, but this
command ignores them (it watches the keyboard only).
If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Input Line VarNum
Accepts up to 128 characters from the keyboard. When the Return key is pressed the line is stored into the
specified variable. If Flush is Off then characters coming in from the port are not processed; if Flush is On then
incoming characters are processed, but this command ignores them (it watches the keyboard only).
If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Ask1 "Question" "Button1" VarNum
Ask2 "Question" "Button1" "Button2" VarNum
Ask3 "Question" "Button1" "Button2" "Button3" VarNum
Question is a string up to 68 characters long
Button# is a string up to 12 characters long
Displays an alert window on the super hires screen that contains the question and the buttons. After this
statement VarNum contains 1, 2, or 3 to indicate which button number was chosen.
The “#” and “*” are special characters in an alert, so to display them you must use them twice (see the example
below). NOTE: No substitution array is defined so using embedded “*” codes will do nothing.
The strings can include these alert replacement items:

The beginning of one button string can include “^^” to indicate that button should be the default choice.
Example:

Ask3 "Special ## characters **?" "#1 This" "#3 Way" "^^#2!" 0
Display "You chose button number $0.^M^J"

#0 OK #2 Yes #4 Try Again #6 Continue

#1 Cancel #3 No #5 Quit

Branching and Loops 36

Branching and Loops
Set Labels State
State can be Off or On
This command controls whether pressing Option-# (where # is a number from 0 to 9) will attempt to “Gosub” that
label (the given routine should include a Return or Pop). NOTE: No error is generated if a numbered label does
not exist. The label search begins at the top of the script each time, so control passes to the first matching label.

Goto Label
Script control jumps to the commands after the first occurrence of Label (the label search begins at the top of
the script).
Example:

Goto Begin
Display "This will never be displayed!"
Begin
Display "Hello!^M^J"; Stop Script

GotoNext Label
Script control jumps to the commands after the next occurrence of Label (the label search begins on the line
after the current statement).
Because searching does not begin at the top of the script, GotoNext is slightly faster than Goto. It is also useful
in creating “modular” subroutines…if the subroutine is structured to use GotoNext instead of Goto, you can cut
and paste the subroutine without fear of any label names conflicting with labels in the script you’re pasting into.

Gosub Label
Script control temporarily transfers to the commands after the first occurrence of Label (the label search begins
at the top of the script). When the Return command is encountered, script control returns to the statement
following the Gosub command.
Gosub is short for “go subroutine.” Subroutines are very useful (but not required). Imagine you were writing a
script that needed to use the same ten commands three different places in a script. Instead of writing those ten
commands each time, write the ten commands only once as a “subroutine.” Whenever those ten commands are
needed you simply “gosub” to that subroutine.
Up to 16 Gosub commands can be active, which means one “subroutine” can call another.
Example without a subroutine:

Set Var 6 "This is an example"; Display "Variable 6 is '$6'.^M^J"; Display "The length
is $Length6.^M^J"

Set Var 6 "of how subroutines"; Display "Variable 6 is '$6'.^M^J"; Display "The length
is $Length6.^M^J"

Set Var 6 "can be useful."; Display "Variable 6 is '$6'.^M^J"; Display "The length is
$Length6.^M^J"

Example with a subroutine:
Set Var 6 "This is an example"; Gosub ShowVar6
Set Var 6 "of how subroutines"; Gosub ShowVar6
Set Var 6 "can be useful."; Gosub ShowVar6

ShowVar6
Display "Variable 6 is '$6'.^M^J"; Display "The length is $Length6.^M^J"
Return

Although the second script might look longer, it actually contains 100 characters less than the first script! Also,
imagine what would happen if you wanted to know whether or not variable 6 contained the letter “a”…instead of
adding commands to three separate locations you simply have to add this to the subroutine (just above the
Return command):

Position "a" "$6" 1 1; If Not Equal "$1" "0" Then Display "There is at least one 'a' in
that phrase.^M^J"

Branching and Loops 37

GosubNext Label
Script control temporarily transfers to the commands after the next occurrence of Label (the label search begins
on the line after the current statement). When the Return command is encountered, script control returns to the
statement following the Gosub command. Because searching does not begin at the top of the script, GosubNext
is slightly faster than Gosub.

Return
When the Gosub or GosubNext command is encountered, Spectrum remembers where the statement is. When
the Return command is encountered, Spectrum returns control to that point.
Example:

Gosub th; Display "ree "; Gosub th; Display "in "; Gosub th; Display "ings!"; Stop
Script

th
Display "Th"; Return

Pop
When the Gosub or GosubNext command is encountered, Spectrum remembers where the statement is. Using
the Pop command makes Spectrum forget the most recent Gosub, which causes the next Return command to
return control to the statement following the second most recent Gosub. NOTE: This can be confusing and is
intended for advanced script authors only.
Example:

Gosub One; Display "Finished.^M^J"; Stop Script
One
Display "Inside ONE..."; Display "Leaving ONE..."; Gosub Two; Display "Back in ONE...";

Return
Two
Display "Inside TWO..."; Display "Leaving TWO..."; Gosub Three; Display "Back in

TWO..."; Return
Three
Display "Inside THREE..."
Pop # this forgets about "Gosub Three"
Pop # this forgets about "Gosub Two"
Return # which means this returns to the statement after "Gosub One"

Pop All
Similar to the Pop command, except Pop All makes Spectrum forget all Gosub commands. Most often useful in
a generic error handler routine. NOTE: This can be confusing and is intended for advanced script authors only.

On Value Goto Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified
Performs a Goto based on the Value (e.g. if Value is 1 then script control passes to the first label; if Value is 5
then script control passes to the fifth Label). NOTE: The label search begins at the top of the script each time, so
control passes to the first matching label.
If Value is 0 then script control “falls through” to the next statement and the Failed flag is set.
Example:

Set Timeout 10; WaitFor String "CONNECT" "BUSY"
If Failed Goto Abort
On $Matched Goto Logon, Redial

On Value GotoNext Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified
Similar to On…Goto except that the label search begins at the current statement, so control passes to the first
matching label after this statement.

Branching and Loops 38

On Value Gosub Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified
Performs a Gosub based on the value (e.g. if Value is 1 then script control passes to the first label; if Value is 5
then script control passes to the fifth label). When a Return command is encountered control returns to the
statement after the On value Gosub command. NOTE: The label search begins at the top of the script each
time, so control passes to the first matching label.
If Value is 0 then script control “falls through” to the next statement and the Failed flag is set.
Up to 16 Gosub commands can be active, which means one “subroutine” can call another.
Example:

Options
Display "Type a number from 1-3: "; WaitFor Keyboard
On $MatchString Gosub One, Two, Three; Goto Options
One
Display "One^M^J"; Return
Two
Display "Two^M^J"; Return
Three
Display "Three^M^J"; Return

On Value GosubNext Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified
Similar to On…Gosub except that the label search begins at the current statement, so control passes to the first
matching label after this statement.

For LoopNumber Start Stop Increment
LoopNumber can be from 0 to 9
Start is a value from 0 to 65535
Stop is a value from 0 to 65535
Increment is optional; if used it is a value from 1 to 65535
The “For” loop lets you easily repeat a sequence of statements a number of times. The loop is controlled by a
counter. The For command initializes the counter to Start, and the counter is incremented each time a Next
command is encountered. When the counter passes Stop the loop stops. Unless specified, Increment is 1. The
current counter value can be determined by using $ForValue# (where # is a number from 0 to 9).
Example:

Display "^LFor/Next loops are much faster than loops done manually!^M^J^J"
Display "Counting with a manual loop: "; Store XY
Set Var 0 "1"
ManualLoop
Restore XY; Display "$0^M^J"
If Not Equal "$0" "100" Then Inc 0; Goto ManualLoop
Display "Counting with a For/Next loop: "; Store XY
For 0 1 100
Restore XY; Display "$ForValue0^M^J"
Next 0
Display "Done!^M^J"

Next LoopNumber
LoopNumber can be from 0 to 9
Tests to see if the loop is finished. If not, control returns to the statement after the For command. Otherwise
control continues to the statement immediately after the Next command.

Clear For LoopNumber
LoopNumber can be from 0 to 9
Clears loop number LoopNumber and sets the counter value to 0. If a Next command is encountered, control
continues to the statement immediately after the Next command.

Conditional Tests 39

Store ForLoops
Remembers the current state of all the For loops.

Restore ForLoops
Restores the saved state of all the For loops.

Conditional Tests
If Equal "String1" "String2" Then Statement
If String1 and String2 are exactly the same then Statement is executed, otherwise control drops to the next line.
Example:

If Equal "THIS" "this" Then Display "The CaseSensitive option is OFF.^M^J"; Stop Script
Display "The CaseSensitive option is ON.^M^J"

If Not Equal "String1" "String2" Then Statement
If String1 and String2 are not exactly the same then Statement is executed, otherwise control drops to the next
line.
Example:

Display "What is your password? "; Get Line 0
If Not Equal "$0" "Garfblat" Then Display "Wrong password!^G^M^J"; Stop Script
Display "Correct!^M^J"

If Contains "LongString" "ShortString" Then Statement
If ShortString is found anywhere in LongString then Statement is executed, otherwise control drops to the next
line.
Example:

If Contains "This is a test" "this" Then Display "YES"; Stop Script
Display "NO"

If Not Contains "LongString" "ShortString" Then Statement
If ShortString is not found anywhere in LongString then Statement is executed, otherwise control drops to the
next line.
Example:

Ask
Display "Do you want to continue? "; WaitFor Keyboard
If Not Contains "YN" "$MatchString" Then Display "^M^JTry Again!^M^J"; Goto Ask

If Keyboard Character Then Statement
If the key pressed in the most recent WaitFor Keyboard command is the same as Character then Statement is
executed, otherwise control drops to the next line.
Example:

Continue
Display "Do you want to continue? "; WaitFor Keyboard
If Keyboard Y Then Return
If Keyboard N Then Pop; Display "^M^JGoodbye!^M^J"; Stop Script
Display "^G"; Goto Continue

Conditional Tests 40

If Not Keyboard Character Then Statement
If the key pressed in the most recent WaitFor Keyboard command is not the same as Character then Statement
is executed, otherwise control drops to the next line.
Example:

Wait
Display "Press the Spacebar to continue."; WaitFor Keyboard
If Not Keyboard " " Then Display "^G"; Goto Wait

If Exists "FoldernameFilename" Then Statement
If the specified file exists then Statement is executed, otherwise control drops to the next line.
Typically you would check to see if a file exists before you attempt to delete or work with the file, thus avoiding
errors.
Example:

If Exists "$SpectrumPathCapture.File" Then Show File "$SpectrumPathCapture.File"; Goto
NextThing

Display "^GThere is no capture file to examine!^M^J"
NextThing
Display "That's all for now!^M^J"; Stop Script

If Not Exists "FoldernameFilename" Then Statement
If the specified file does not exist then Statement is executed, otherwise control drops to the next line.
Typically you would make sure a file does not exist so you won’t accidentally overwrite an important file.
Example:

Gosub GetCaptureName; Display "Capturing to $0..."; Stop Script
GetCaptureName
Display "Capture text to what filename? "; Get Line 0
If Not Exists "$SpectrumPath$0" Then Return
Display "^M^J^GThat name is already used--"; Goto GetCaptureName
In reality you should use the Get File command to let the user specify a name and

location of the file.

If Failed Then Statement
If the Failed flag is set then Statement is executed, otherwise control drops to the next line. NOTE: “If Failed” is
the same as “If Not Found”.
The Failed flag is set or cleared by various commands (e.g. Dial, WaitFor, etc.). The If Failed command can be
used to determine if a command failed. NOTE: The Failed flag is correct only following a command that sets or
clears it…test the flag immediately after these commands (do not put statements between the command and the
”If Failed” test).
Example:

Ask
Display "^M^JPress a key to continue..."
Set Timeout 5; WaitFor Keyboard
If Failed Then Display "Hurry up!^G^M^J"; Goto Ask
Return

If Not Failed Then Statement
If the Failed flag is clear then Statement is executed, otherwise control drops to the next line. NOTE: “If Not
Failed” is the same as “If Found”.
The Failed flag is set or cleared by various commands (e.g. Dial, WaitFor, etc.). The If Not Failed command can
be used to determine if a command was successful. NOTE: The Failed flag is correct only following a command
that sets or clears it…test the flag immediately after these commands (do not put statements between the
command and the ”If Not Failed” test).
Example:

Conditional Tests 41

Dial String "555-1234"
If Not Failed Then Goto Connected
Display "The dial command failed.^M^J"; Stop Script

If Found Then Statement
If the Found flag is set then Statement is executed, otherwise control drops to the next line. NOTE: “If Found” is
the same as “If Not Failed”.
The Found flag is set or cleared only by the WaitFor commands that use a Timeout (Found is set if the WaitFor
command succeeds).
Example:

Ask
Display "^M^JPress a key to continue..."
Set Timeout 5; WaitFor Keyboard
If Found Then Return
Display "Hurry up!^G^M^J"; Goto Ask

If Not Found Then Statement
If the Found flag is clear then Statement is executed, otherwise control drops to the next line. NOTE: “If Not
Found” is the same as “If Failed”.
The Found flag is set or cleared only by the WaitFor commands that use a Timeout (Found is cleared if the
WaitFor command times out).
Example:

Ask
Display "^M^JPress a key to continue..."
Set Timeout 5; WaitFor Keyboard
If Not Found Then Display "Hurry up!^G^M^J"; Goto Ask
Return

If Null VarNum Then Statement
If the given variable number is empty ("") then Statement is executed, otherwise control drops to the next line.
Example:

Display "What is your name? "; Get Line 0
If Null 0 Then Display "We'll call you 'Fred' because you didn't type anything!^M^J";

Set Variable 0 "Fred"
Display "Hello there, $0!^M^J"

If Not Null VarNum Then Statement
If the given variable number is not empty then Statement is executed, otherwise control drops to the next line.
Example:

Display "What is your name? "; Get Line 0
If Not Null 0 Then Display "Hello there, $0!^M^J"

If Even VarNum Then Statement
If the value of the given variable number is an even number then Statement is executed, otherwise control drops
to the next line. NOTE: “If Even” is the same as “If Not Odd”.

If Not Even VarNum Then Statement
If the value of the given variable number is not an even number then Statement is executed, otherwise control
drops to the next line. NOTE: “If Not Even” is the same as “If Odd”.

If Odd VarNum Then Statement
If the value of the given variable number is an odd number then Statement is executed, otherwise control drops
to the next line. NOTE: “If Odd” is the same as “If Not Even”.

Conditional Tests 42

If Not Odd VarNum Then Statement
If the value of the given variable number is not an odd number then Statement is executed, otherwise control
drops to the next line. NOTE: “If Not Odd” is the same as “If Even”.

If CarrierDetect Then Statement
NOTE: This command is reliable only if your modem properly controls the DCD signal, and you have a properly-
wired modem cable, and the “DCD Handshake” option is on.
If the modem is currently connected to a host then Statement is executed.

If Not CarrierDetect Then Statement
NOTE: This command is reliable only if your modem properly controls the DCD signal, and you have a properly-
wired modem cable, and the “DCD Handshake” option is on.
If the modem is not currently connected to a host then Statement is executed.
Example:

- Run this script when you are NOT online
Transmit "AT&C1^M" # - a common modem command so the modem will adjust the DCD line to

indicate whether a remote modem's data carrier tone is present
Set DCD On # - set Spectrum so it trusts the DCD signal
Display "Your setup apparently does "
If CarrierDetect Then Display "NOT "
Display "support DCD.^M^J"

If Debug Then Statement
If debugging is currently “Screen” or “Scrollback,” then Statement is executed.

If Not Debug Then Statement
If debugging is currently off then Statement is executed.

If TheManager Then Statement
If Spectrum is currently being run under The Manager (Seven Hills Software’s multi-tasking environment for the
Apple IIgs) then Statement is executed.

If Not TheManager Then Statement
If Spectrum is not currently being run under The Manager then Statement is executed.

Screen Appearance 43

Screen Appearance
Set ChatLine State
State can be Off or On
Controls whether the chat line is visible or not. NOTE: Some online displays do not support a chat line.

Set AutoChat State
State can be Off or On
Normally when the chat line is turned on, the port is automatically set to full duplex. When the chat line is turned
off the original duplex setting is restored. If you turn AutoChat off, Spectrum will not automatically change the
duplex setting when the chat line is turned on and off.

Set StatLine State
State can be Off or On
Controls whether the status line is visible or not. NOTE: Some online displays do not support a status line.

Store XY
Stores the current cursor position and sets the values for $StoredX and $StoredY.

Restore XY
Restores the cursor position that was last stored using the Store XY command.

GotoXY X,Y
X (horizontal position) is a value from 0 to 79
Y (vertical position) is a value from 0 to 23
Attempts to move the cursor to the specified screen position. The limits for each value depend upon the online
display being used. Be aware that the setting of the chat line and status line might also affect the range of
acceptable values.

Draw Window Left Right Top Bottom
Left and Right are values from 0 to 79
Top and Bottom are values from 0 to 23
Draws a window extending from (Left, Top) to (Right, Bottom). The limits for each value depend upon the online
display being used. Be aware that the setting of the chat line and status line might also affect the range of
acceptable values. A script error occurs if a value is used that would place a window coordinate off the screen.
After drawing the window you can use the GotoXY and Display commands to display something within the
window. NOTE: The window is simply a visual effect—text you display can easily overwrite a window’s frame.

Print Screen

Prints the current screen to the printer, just as if Shift- 4 was pressed.

Save Screen

Saves the current screen to disk, just as if Shift- 3 was pressed.

Set Flush State
State can be Off or On
Incoming data is stored in the port buffer until Spectrum has time to deal with it. When Flush is On, data in the
port buffer is processed constantly. When Off, data in the port buffer is processed only during Get Key, Get Line,
WaitFor Keyboard, and WaitFor String commands (or when the script stops), which makes those commands
more reliable.

Prefix Control 44

Set Screen State
State can be Off or On
This command determines whether incoming or outgoing data is displayed on the screen when a script is
running (incoming data will still be captured if the capture buffer is turned on, and it will still be seen by the
WaitFor, Get Line, and Get Key commands). Commands that directly display to the screen, such Display, will
continue to display on the screen.

Set ScreenBlank State
State can be Off, On, or Auto
Controls a built-in screen blanker that blanks the screen (except for the border color). The screen is blanked
only while a script is being run…when the script stops the screen is unblanked. NOTE: If the Twilight II screen
blanker is active, Spectrum asks it to “background blank” the screen.
Off: The screen is not blanked.
On: Blanks the screen immediately.
Auto: Blanks the screen only during WaitFor commands. In the example script below, the screen will be blanked
until 7pm, at which time it will unblank (in case you happen to want to watch the online session), dial a service,
send and receive mail, then log off. The final WaitFor command will blank the screen until you press a key.
Example:

Set ScreenBlank Auto
WaitFor Time "19:00" # wait until 7pm
Dial Service "CompuServe" # dial CompuServe
If Not Failed Then Gosub Login; Gosub SendMail; Gosub ReadMail; Hangup
WaitFor Keyboard; Stop Script # wait until a key is pressed

Prefix Control
Set SFPrefix "Foldername"
Sets GS/OS prefix 0 and prefix 8 to the specified folder.

Set GSPrefix Value "Foldername"
Value can be 0, 2 through 8, or 10 through 31
Sets the specified GS/OS prefix number to the specified folder. Prefix numbers, followed by a colon, can be
used as shortcuts wherever a Foldername is required. For example, Show Catalog "8:" will list the files stored in
the prefix 8 folder.
Prefix 1 and 9 is the folder where Spectrum is located and therefore it cannot be changed. All the other prefixes
are not used by Spectrum so they are available to scripts.
Prefix 0 is a working path; NDAs and applications change this frequently. Prefix 8 is the current prefix. The next
time an “Open” or “Save” dialog box appears, the prefix 8 folder will appear. Prefix 0 and prefix 8 can be
changed independently, but usually they are set together (use the Set SFPrefix command as a shortcut).
Prefix 0 and 8 are volatile—they can be changed by desk accessories, loading a file in the Spectrum editor, and
so on. Therefore it is better to use higher numbered prefixes to remember a prefix for a long time.
Example:

Set GSPrefix 21 "$BootSystem" # The system folder on the disk we booted from
(e.g. :Hard:System)

Set GSPrefix 22 "21:Desk.Accs" # this is identical to typing "$BootSystem:Desk.Accs"
Set GSPrefix 23 "21:Fonts"
Display "Your Desk Accessories:^M^J"; Show Catalog "22:"

Display "Your Fonts:^M^J"; Show Catalog "23:"

Capture Buffer Control 45

Capture Buffer Control
Set Buffer State
State can be Off, On, Auto, or Manual
Off/On: Determines whether or not incoming characters are saved into the capture buffer or the capture file
(whichever is active). NOTE: Script commands that record directly to the buffer will do so regardless of this
setting.
Auto/Manual: Controls the “Auto buffer control” checkbox in the Online Displays Settings dialog box. When this
option is set to Auto, the host can turn your capture buffer on and off by sending a ^R or ^T, respectively.
NOTE: Auto buffer control works only if the capture buffer has been turned off.

Clear Buffer
Clears the capture buffer so it contains no characters.

Open CaptureFile "FoldernameFilename"
Deletes the specified file if it exists, then creates a new file and begins capturing incoming data to it instead of to
memory.

Append CaptureFile "FoldernameFilename"
Opens the specified text file and begins capturing incoming data to the end of it.

Close CaptureFile
Closes the capture file and resumes storing incoming data into memory.

Set Append State
State can be Off or On
Determines whether data is appended to the end of an existing file or whether data overwrites any existing file
when using the Save Buffer or Write Buffer commands (see those commands for more information).

Set AutoSave "FoldernameFilename"
Filename must be at least three characters long
Specifies the file to use when saving the capture buffer using the Save Buffer command. This is used as a
shortcut…you can establish this AutoSave filename and whenever you need to save the capture buffer just
issue a Save Buffer command (as opposed to using Write Buffer "FoldernameFilename" each time you need to
save the capture buffer).

Set AutoSaveBuffer State
State can be Off or On
Determines what occurs when the capture buffer completely fills. When on, Spectrum automatically issues a
Save Buffer command; when off the user is presented with a dialog box from which he can clear or save the
capture buffer.

Save Buffer
If the Append flag is off, the AutoSave filename is incremented by 1 and a new file is created. NOTE: If there is
no number as the last character of the filename then a “1” is inserted (if a number is there it gets incremented).
When the number at the last position gets to 9 then the second to last character is set to 1 or increments if it’s
already a number. The maximum is 99 files, at which point you get an error “name no longer valid.”
If the Append flag is on, the AutoSave filename is not changed and the capture buffer contents are appended to
the end of the existing AutoSave filename (if the file doesn’t exist yet it is created).
After saving the contents of the capture buffer, the buffer is cleared.

Transferring Files 46

Write Buffer "FoldernameFilename"
If the Append flag is off, the specified file is deleted if it already exists, then the capture buffer contents are
saved.
If the Append flag is on, if the file exists it is not deleted (if Filename does not exist it is created). The capture
buffer contents are appended to the end of the existing file.
After writing the contents of the capture buffer, the buffer is cleared.

Load Buffer "FoldernameFilename"
Loads the file into the capture buffer.

Transferring Files
Send File "FoldernameFilename" Protocol
Protocol can be Text, ProDOS, Xmodem, 1KXmodem, 4KXmodem, BPlus, Ymodem, or Zmodem
Sends the specified file using the specified protocol. A file transfer dialog box appears for all protocols except
possibly Text (which depends upon the ULTextShow setting).
See the “File Transfer Settings” section for settings that apply to file transfers. For example, the “Turbo” option
determines whether regular Ymodem or Ymodem-g is used.
If the transfer fails the Failed flag is set, otherwise it is clear.

Receive File "FoldernameFilename"
Spectrum automatically detects which protocol is being used, then it receives a file via Xmodem, 1K Xmodem,
4K Xmodem, Ymodem, or Ymodem-g and saves it as FoldernameFilename.
If the transfer fails the Failed flag is set, otherwise it is clear.

Receive File Protocol
Protocol can be BPlus or Zmodem
Receives a file using the specified protocol and saves it into the current file transfer folder ($FileXferPath). The
filename is not needed because it is provided by the incoming data.
When receiving a Zmodem file the same process is used that is used for an “auto receive” file, except that the
script can control how long Spectrum waits for the transfer to start. Set the wait time using Set Timeout with a
value from 10 to 600 (10 seconds to 10 minutes).
If the transfer fails the Failed flag is set, otherwise it is clear.

OS Utilities 47

OS Utilities
Delete File "FoldernameFilename"
Permanently deletes the specified file. Use with caution!
Example:

Set Var 0 "$ScriptPathTemporary.File"
If Exists "$0" Then Delete "$0"

Rename File "Foldername1Filename1" "Foldername2Filename2"
Renames the first item to the second name. The folder names can either refer to the same folder (which just
renames Filename), or they can refer to different folders on the same disk (which moves Filename into the
second folder). For example…

Rename ":Hard:Spectrum:Capture.File" ":Hard:Archives:Capture"

…renames “Capture.File” to be called “Capture” and it moves it from the Spectrum folder into the Archives folder
(which must already exist on the same disk).

Copy File "Foldername1Filename1" "Foldername2Filename2"
Makes an exact copy of the first file. The copy is named Filename2 and is stored in the Foldername2 folder.

Create Folder "FoldernameFilename"
Creates a new folder named Filename in the Foldername folder.

Get FileSize "FoldernameFilename" VarNum
The number of bytes in the specified file’s data and resource forks.

Get VolumeSize "Volumename" VarNum
The total size of the specified disk, in bytes.

Get VolumeFree "Volumename" VarNum
The number of bytes of free space on the specified disk.

Get FileInfo "FoldernameFilename" VarNum
Gets information about the specified file. The information is in the following format (use the Substring command
to extract the desired pieces of information):

Start Length Information
1 31 Filename

33 3 3-letter abbreviation for common filetypes or $00

37 8 Length (data fork plus resource fork)

46 1 D=Can Destroy (blank space if not)

47 1 N=Can Rename (blank space if not)

48 1 B=Needs Backup (blank space if not)

49 1 W=Can Write (blank space if not)

50 1 R=Can Read (blank space if not)

52 2 Hexadecimal filetype

55 4 Hexadecimal auxtype

OS Utilities 48

Example:
Get FileInfo "$ScriptPath$ScriptFile" 0
Substring "$0" 1 31 1 # $1 now has the name
Substring "$0" 33 3 2 # $2 now has the type
Substring "$0" 46 5 3 # $3 now has the file flags
Display "Name: $1^M^JType: $2^M^JInfo: $3^M^J=====^M^J"

Show Catalog "Foldername"
Shows a listing of the items stored in the specified folder. If you also want to send the listing to the port, Set
Echo On before showing it.

ShowRecord Catalog "Foldername"
A listing of the items stored in the specified folder is shown on the screen and recorded to the capture buffer. If
you also want to send the listing to the port, Set Echo On before showing it.

Record Catalog "Foldername"
A listing of the items stored in the specified folder is recorded into the capture buffer.

Show File "FoldernameFilename"
Shows the specified AppleWorks Classic, Teach, or Text file on the screen. If you also want to send the listing to
the port, Set Echo On before showing it.

Get File "PromptString" Kind VarNum
Kind can be 0 (any file), 1 (text only), or 2 (text, AppleWorks, or Teach)
Presents the standard “Open” file dialog box in which the user can select a file. PromptString is shown at the top
of the dialog box (e.g. “Select the file to rename”). Only files matching the given Kind will be shown. NOTE: If the
script can be run unattended, do not use this command because it requires the user to interact with it (there is
no “timeout”).
If the user cancels the dialog box the Failed flag is set and the specified variable number is cleared to "". If the
user did not cancel the dialog box, the specified variable number contains the name of the file that was
highlighted and the prefix is set to the folder that contains the file ($SFPrefix).
This command does not open or load a file; it merely provides a standard way for the user to select a file.
Example:

Get File "Select the file to format:" 2 0 # select a text, AppleWorks, or Teach file
If Failed Then Stop Script # user clicked Cancel
Load ScriptEditor "$0" # load the file into the script editor
Apply LowASCII; Apply RemoveControls; Apply LFsToCRs; Apply Format 3 # format message

for posting
Save ScriptEditor "$0" # save the formatted file

Put File "PromptString" "NameString" VarNum
NameString is optional; if not used “Untitled” is used
Presents the standard “Save” file dialog box in which the user specifies a filename and location to store a file.
PromptString is shown above the name (e.g. “Save the file as…”). NameString is the suggested name that will
appear in the dialog box. NOTE: If the script can be run unattended, do not use this command because it
requires the user to interact with it (there is no “timeout”).
If the user cancels the dialog box the Failed flag is set and the specified variable number is cleared to "". If the
user did not cancel, the specified variable number contains the name of the file they typed, and $SFPrefix
indicates the folder they want the file stored in.
This command does not create a file; it merely provides a standard way for the user to specify a filename and
location. If the command is successful you can be assured the returned Filename is a legal name.
The only special condition to be aware of is if the user specifies the name of a file that already exists on disk. In
this case the system has already received permission to replace the existing file, but it has not deleted it. To

Reading and Writing Files 49

avoid errors you should follow a successful Put File command with a statement to delete the file if it exists (see
example).
Example:

Put File "Save mail as..." "Untitled" 0
If Failed Then Stop Script # user clicked Cancel
If Exists "$0" Then Delete "$0" # if the file already exists, delete it (the user has

already given permission)
Write Buffer "$0" # save the capture buffer using the filename the user specified

Reading and Writing Files
Up to four files (numbered 0, 1, 2, and 3) may be open at a single time. After a file is opened for reading or
writing (using either the Open or Append command) refer to the file using the FileNumber.

Open File FileNumber "FoldernameFilename"
FileNumber can be from 0 to 3
Opens the specified text file for reading or writing as file number FileNumber. If the file does not exist it is
created. NOTE: This command will also open Teach files, but only for reading (i.e. using Write File will cause an
error).
If you want to write a file from scratch you should delete it first (if it exists) because writing to a file does not
shorten the file’s length. For example, if a text file contains 100 characters and you open it, write 15 characters,
then close it, the file will still contain 100 characters…15 new characters followed by the 85 old ones.

Append File FileNumber "FoldernameFilename"
FileNumber can be from 0 to 3
Opens the specified text file as file number FileNumber and sets the file marker to the end of the file so that
writing will occur at the end of the file.

Read File FileNumber VarNum
FileNumber can be from 0 to 3
Reads the file and stores the read characters into variable number VarNum. Reading stops when 128 characters
are read, when a CR is encountered, or when the end of the file is encountered.
If you attempt to read past the end of a file the Failed flag is set and variable number VarNum is set to "".

Write File FileNumber "String"
FileNumber can be from 0 to 3
Writes the string into the open file at the current position.

Close File FileNumber
FileNumber is optional; if used it can be from 0 to 3
Closes the specified file. If no FileNumber is used then all four files are closed (if open). If you forget to close a
file you open, it will be closed automatically when the script stops.

Reading Catalogs & Script Editor 50

Reading Catalogs
Up to four catalogs (numbered 0, 1, 2, and 3) may be opened at a single time. After a catalog is opened you
refer to it using the CatalogNumber.

Open Catalog CatalogNumber "Foldername"
CatalogNumber can be from 0 to 3
Opens the specified Foldername for reading. REMEMBER: A Foldername can be just a volume name, or a
volume name plus one or more folder names.

Read Catalog CatalogNumber VarNum
CatalogNumber can be from 0 to 3
Reads one catalog entry and stores information about it into variable number VarNum. If you attempt to read
past the end of a catalog the Failed flag is set and variable number VarNum is set to "".
Each entry is in the format described under the Get FileInfo command.

Close Catalog CatalogNumber
CatalogNumber is optional; if used it can be from 0 to 3
Closes the specified catalog. If no CatalogNumber is used then all four catalogs are closed (if open). If you
forget to close a catalog you open, it will be closed automatically when the script stops.

Script Editor
There is a text editor available just for scripts to use; it is entirely separate from the built-in text editor. The script
editor can be used to load a file, apply formats to it, and send or save the file.

The script editor commands are ideal for automatically formatting a message for posting, or for automatically
formatting incoming messages to be more readable.

Load ScriptEditor "Item"
Item can be a FoldernameFilename, or can be ::Scrollback, ::Buffer, or ::Clipboard
Loads the specified item into the script editor, replacing any existing script editor in memory. A script error occurs
if the specified item could not be loaded.
If Item specifies a file on disk, the file must be a text, Teach, or AppleWorks Classic file.
If Item is ::Scrollback, then contents of the current scrollback buffer are copied into the script editor.
Likewise, ::Buffer copies the current capture buffer contents and ::Clipboard copies the system clipboard
contents. NOTE: As a shortcut you can also use ::S, ::B, or ::C (everything after the first letter is ignored).

Append ScriptEditor "Item"
Item can be a FoldernameFilename, or can be ::Scrollback, ::Buffer, or ::Clipboard
Appends the specified item to the end of the current script editor. A script error occurs if the specified item could
not be appended.
If Item specifies a file on disk, the file must be a text, Teach, or AppleWorks Classic file.
If Item is ::Scrollback, then contents of the current scrollback buffer are appended onto the script editor.
Likewise, ::Buffer appends the current capture buffer contents and ::Clipboard appends the system clipboard
contents. NOTE: As a shortcut you can also use ::S, ::B, or ::C (everything after the first letter is ignored).

Save ScriptEditor "FoldernameFilename"
If a file has previously been loaded into memory, this command writes the file from memory to disk. If the
specified file already exists on disk it is deleted before the new text file is written. NOTE: Save ScriptEditor

Script Editor 51

always creates a text file; if you load a Teach file into the script editor then save it with the same name, you will
be deleting the Teach file and replacing it with a text file.
Saving the ScriptEditor does not clear the file from memory, which means you can load a file, apply a format,
save that version, apply another format, save that version, and so on. When you are done working with a file you
should use the Clear ScriptEditor command to erase the file from memory.

Clear ScriptEditor
Clears the ScriptEditor text from memory, thus making the memory available for other uses. You should always
clear the script editor when you are done using it. If you forget, the script editor will be cleared automatically
when the script stops.

Send ScriptEditor
Sends the contents of the script editor via Text protocol. A file transfer dialog might appear (depends upon the
“ULTextShow” setting). See the “File Transfer Settings” section for settings that apply to file transfers.
If the transfer fails the Failed flag is set, otherwise it is clear.

Apply Replace "FindString" "ReplaceString" VarNum
VarNum is optional
Replaces all occurrences of FindString with ReplaceString, and stores the number of changes made into
variable number VarNum. The CaseSensitive option affects the search. NOTE: Because Apply Replace can take
a long time to complete, consider displaying a message to let the user know that your script is working.
You can search for control characters by using a caret (^) and the letter of the control character (e.g. use ^M to
find all carriage returns). To search for an actual caret character, use ^^.

Apply LowASCII
Converts the loaded text to low ASCII by stripping off the high bit.

Apply RemoveControls
Removes all control characters except for tabs, carriage returns, and linefeeds. If a backspace character (^H,
ASCII $08) is removed, the one preceding character is also removed.

Apply LFsToCRs
Changes all carriage return/linefeed combinations into a carriage return, and changes standalone linefeed
characters into carriage return characters.

Apply RemoveSpaces
Replaces two or more consecutive space characters with only a single space, and removes spaces before a
carriage return

Apply Special Value
Value can be from 1-5
Applies one of the following special formats:

Value Special Format
1 all lower case

2 ALL UPPER CASE

3 All Proper Names

4 Capitalize sentences

5 Convert Viewdata to Text

Script Editor & Error Control 52

Apply Format Value
Value can be from 1-4
Applies one of the following formats:

Example:
Load ScriptEditor "Message"; Display "Formatting..."
Apply Replace "…" "..." 1 # option-semicolon to ...
Apply Replace "—" "--" 1 # shift-option-dash to --
Apply LowASCII; Apply RemoveControls; Apply LFsToCRs; Apple Format 4
Display "done!^M^J"
Save ScriptEditor "Message"
Clear ScriptEditor

Error Control
On Escape Goto Label
If the user presses Escape while a script is running, Spectrum normally cancels the script with an error message
stating that the script has been stopped. Some script authors might want to exit more gracefully if the user
presses Escape, or perhaps confirm that the user really wants to stop the script.
If the On Escape Goto command has been encountered, instead of cancelling the script Spectrum jumps to the
given label. If the label is not found then the script is cancelled in the usual way.
Although you can use Resume to continue the script from the point where the user pressed Escape, keep in
mind that if he has pressed Escape then he probably wants to stop the script. Therefore the commands located
at Label should let the user exit the script.
To turn off the On Escape Goto command, use an empty string ("") for the label.
Example:

On Escape Goto Quit # Also try running without this line to see what happens when you
press ESC

Loop
Display "Press ESC to quit..."; Goto Loop
Quit
On Escape Goto ""
Display "^M^J^JThanks for using this script!^M^J"
Stop Script

On Escape GotoNext Label
Similar to the On Escape Goto command, except that Spectrum jumps to the next occurrence of Label (the
search does not begin at the top of the script). This is useful for creating “local” Escape handlers.

Value Format
1 CRs into spaces

2 Add line feeds

3 Lines into paragraphs

4 Paragraphs into lines

Script Editor & Error Control 53

On Error Goto Label
If a script error occurs while a script is running, Spectrum normally cancels the script and displays an error
message. Some script authors might want to catch certain errors or exit more gracefully if an error occurs.
If the On Error Goto command has been encountered and an error occurs, Spectrum jumps to the given label
instead of cancelling the script. If the label is not found then the script is cancelled in the usual way.
If you use the On Error Goto command, keep in mind that if a script error has occurred then the script probably
should be stopped, so the commands located at Label should clean things up and exit the script. To report the
error to the user a script can use the $ErrorMsg replacement item or the Show Error command.
To turn off the On Error Goto command, use an empty string ("") for the label.
Example:

Loop
Display "Perform what script command? "; Get Line 3; If Null 3 Then Stop Script
On Error Goto BadCommand # turn on error checking
$0 # execute the command that was typed
On Error Goto "" # turn off error checking
Goto Loop
BadCommand
Display "^M^J^GSpectrum doesn't recognize the command '$0'.^M^J^J"
Goto Loop

On Error GotoNext Label
Similar to the On Error Goto command, except that Spectrum jumps to the next occurrence of Label (the search
does not begin at the top of the script). This is useful for creating “local” Error handlers.

Resume
Use only in an “On Escape Goto” or “On Error Goto” procedure
Continues running the script as if Escape was not pressed or as if the error did not occur. NOTE: This can be
confusing and is intended for advanced script authors only.

Show Error
Use only in an “On Error Goto” procedure
Displays the same error box that would appear if no On Error Goto command was encountered, but does not
stop the script. As usual, if the user does not respond to the error box within 30 seconds, the error box
disappears automatically and Spectrum hangs up the line (if necessary). This is a safety feature for scripts that
run unattended (by hanging up, online charges are kept to a minimum).

Script Interpretation 54

Script Interpretation
Set CaseSensitive State
State can be Off or On
The setting of the CaseSensitive option affects all text comparisons (e.g. Goto, Gosub, WaitFor String, If
Contains, Apply Replace, etc.). It does not affect script commands themselves (i.e. display, Display, DISPLAY,
dIsPlAy work identically regardless of the state of the CaseSensitive option). NOTE: Each time a script is run
(not chained to) CaseSensitive is turned off.
Example:

Display "Type ON or OFF: "; Get Line 0
Set CaseSensitive $0
Goto LaBeL
label
Display "CaseSensitive is OFF.^M^J"; Stop Script
LaBeL
Display "CaseSensitive is ON.^M^J"; Stop Script

Set Quote Character
Sets the special character that is used to delimit a string parameter—usually the double quote (") character.
NOTE: This command must be placed on a line by itself!
Example:

Set Quote A
Display A"You will see these quotes!^M^J"A
Set Quote "

Set Token Character
Sets the special character that is used to indicate a control character—usually the caret (^) character.
NOTE: This command must be placed on a line by itself!
Example:

Set Token \
Display "\LDisplaying ^L clears the screen.\M\J"
Set Token ^

Advanced or Speciality Commands 55

Advanced or Specialty Commands
NOTE: This section describes advanced or specialty commands that should be used with caution. Many
of these commands will not work unless a specific online display is being used. Information for each
online display can be found on disk in Spectrum’s “Documentation” folder.

DirectDisplay "String"
Feeds String to the current online display as if the data were coming in from the port. The interpretation of String
is entirely up to the current online display; use this command only when you know a particular display is in use
and you want to take advantage of special features in that display.

DirectAction "String" VarNum
Passes String to the current online display for processing; the results are returned in VarNum. If the display does
nothing then VarNum is cleared to "" and the Failed flag is set. If VarNum would be longer than 128 characters
then a script error occurs.
The available actions that can be performed, as well as the meaning of the returned results, are entirely up to
the current display.

Draw Line Left Right Top Bottom Color Size
Left and Right are values from 0 to 639
Top and Bottom are values from 0 to 186
Color is optional; if used it is a value from 0 to 15
Size is optional; if used it is a value from 1 to 15
Draws a line extending from (Left,Top) to (Right,Bottom). If Color is specified the line is drawn with the specified
color (black if not specified). If Size is specified the line is Size pixels thick (1 pixel if not specified).

Draw Rectangle Left Right Top Bottom Fill Frame
Left and Right are values from 0 to 639
Top and Bottom are values from 0 to 186
Fill and Frame are optional; if used they are values from 0 to 15
Draws a rectangle extending from (Left,Top) to (Right,Bottom). If Fill is specified the rectangle is filled with the
specified color (black if not specified). If Frame is specified the rectangle is framed with a border in the specified
color (black if not specified). TIP: If you need a different width border than the one automatically provided, just
draw two rectangles—one with the frame color, then a smaller one with the fill color.

Draw Circle Left Right Top Bottom Fill Frame
Left and Right are values from 0 to 639
Top and Bottom are values from 0 to 186
Fill and Frame are optional; if used they are values from 0 to 15
Draws a circle inside the area (Left,Top) to (Right,Bottom). If Fill is specified the circle is filled with the specified
color (black if not specified). If Frame is specified the circle is framed with a border in the specified color (black if
not specified). TIP: If you need a different width border than the one automatically provided, just draw two circles
—one with the frame color, then a smaller one with the fill color.

Draw Icon X,Y "Icon" "FoldernameFilename"
X is a value from 0 to 639
Y is a value from 0 to 186
Icon is the name or resource number of the desired icon
FoldernameFilename is optional; if used it is the file that contains the desired resource
Draws the specified icon resource at coordinates (X,Y). NOTE: This command works only on 640 mode super-
hires screen displays.
Spectrum searches for Icon in memory (if a file was opened it is searched first). A script error occurs if Icon is
not found, or if a file was specified but could not be opened.

Advanced or Speciality Commands 56

The following icons are available within Spectrum:

The following icons are available in System 6.0.1’s “Sys.Resource” file:

Example:
Set OnlineDisplay "Spectrum SHR Fast"; Display "^L"
For 0 0 9; Draw Icon 8,22 "SP-Mail $ForValue0"; Next 0
Draw Icon 1,20 "$$07FF0058"

Draw Picture X,Y "Picture" "FoldernameFilename"ii.Draw Picture;
X is a value from 0 to 639
Y is a value from 0 to 186
Picture is the name or resource number of the desired picture
FoldernameFilename is optional; if used it is the file that contains the desired resource
Draws the specified picture resource at coordinates (X,Y). NOTE: This command works only on 640 mode
super-hires screen displays.
Spectrum searches for Picture in memory (if a file was opened it is searched first). A script error occurs if Picture
is not found, or if a file was specified but could not be opened.
Pictures should be stored in the 640 mode screen format, and care should be taken to draw them at the proper
X coordinate so the dithered colors come out correctly (usually X should be even).
Example:

Set OnlineDisplay "Spectrum SHR Fast"; Display "^L"
Draw Picture 118,35 "About Pic"

Set RTS State
State can be Off or On
Drops/raises the hardware handshaking line to tell the modem to stop sending information to Spectrum. Do not
set RTS off for very long, as incoming data may overflow the modem’s buffer.

SP-Express Mail SP-No Mail SP-Have Mail

SP-In Tray SP-Out Tray SP-Mail 0

SP-Mail 1 SP-Mail 2 SP-Mail 3

SP-Mail 4 SP-Mail 5 SP-Mail 6

SP-Mail 7 SP-Mail 8 SP-Mail 9

SP-Stop SP-Note SP-Checkmark

SP-Spectrum SP-Printer SP-Phone

SP-Spectrum small SP-Printer small SP-Phone small

SP-Arrow 1 Down SP-Arrow 1 Left SP-Arrow 1 Right

SP-Arrow 1 Up SP-Arrow 2 Down SP-Arrow 2 Left

SP-Arrow 2 Right SP-Arrow 2 Up

Caution Note Stop

Disk Disk Swap $$07FF0104

$$07FF0103 $$07FF0102 $$07FF0058

Advanced or Speciality Commands 57

Set Init State
State can be Off or On
When on, the modem will be initialized before dialing. Normally you should not include this command because
the option is automatically controlled (it is on at program startup and turned off after the modem is initialized).

Set InitString "String"
Sets the modem initialization string.

Initialize Modem
Initializes the modem if the “Init” option is on. If the modem is initialized successfully (or if the “Init” option was
off) then the Failed flag is cleared, otherwise it is set to indicate an error (the modem is not responding).

Make ASCII VarNum
Determines the ASCII value of the first character stored in the specified variable, then sets the variable to
contain that decimal number. $VarNum is empty the Failed flag is set.
Example:

Set Var 3 "A" # the character "A"
Display "The letter $3 = ASCII "
Make ASCII 3 # converts "A" into its ASCII value (65)
Display "$3.^M^J"

Make CHAR VarNum
Determines the value stored in the specified variable. If $VarNum is a number from 0 to 255 then the variable is
set to contain the referenced character. If $VarNum is empty the Failed flag is set. If $VarNum is a number
greater than 255 a script error occurs.
Example:

Set Var 3 "65" # the ASCII value for the character "A"
Display "ASCII $3 = the letter "
Make CHAR 3 # converts "65" into its character (A)
Display "$3.^M^J"

Expand Variable VarNum
Shortcut: Expand Var VarNum
Expands any replacement items within the given variable. If the expansion makes the length of variable number
greater than 128, the Failed flag is set and the variable is not changed.
Example:

Display "Type '$Boot' and press Return: "; Get Line 1
Display "^M^JYou typed '$1' which expands to "
Expand Variable 1
Display "$1^M^J^J"

Clear PortBuffer
Clears the port buffer of all pending data. One use might be to eliminate unwanted “junk” characters that
sometimes occurs when you log off a system.
Example:

Store Settings; Set Screen Off; Set Buffer Off
Transmit "Bye^M"; Hangup; Clear PortBuffer
Restore Settings

Script Language Changes 58

Script Language Changes
This section details new and changed script commands in all versions of Spectrum between 2.0 and 2.5.3. It is
intended for script authors; script users should find that scripts written for version 1 still execute identically under
version 2.5.3 (just a whole lot faster).

General
•! Instead of having only ten variable numbers (0 through 9), Spectrum now supports any number of named

variables.
•! Added support for “Spectrum External Commands” (or XCMDs), which can provide sophisticated add-on

features for scripts.
•! Version 2.5.3 executes scripts many times faster than version 1 did!
•! The chosen online display automatically opens for commands that require it to be open, but the flag

wasn’t getting reset if the Editor window was opened. Fixed.
•! “#” comments at the end of commands with optional parameters could cause problems. Fixed.
•! If a line had only a replacement variable on it, and the replacement variable is empty, an error would

occur. Fixed.

Changes in v2.5.3

Specially Treated Characters 59

Specially-Treated Characters
$ (Replacement Items)
$Version
Gets replaced by the software’s name and version number (e.g. Spectrum 2.1).
$AutoSaveFile
Gets replaced by the name of the current AutoSave file (if the filename has had a suffix added or incremented,
this replacement will show the current name).
$Debug
Gets replaced by the current debugging state (see Set Debug in the scripting manual).
$DebugFile
If $Debug indicates debugging is going to a file, then $DebugFile provides the FoldernameFilename of the
debug file.
$LastFile
Gets the name of the last file that was saved or selected in a standard file dialog.
$LastXferPath
Gets replaced by the Foldername of the last successful file transfer. The value remains valid until the next
successful file transfer. NOTE: The Kermit XCMD does not update this value.
$LastXferFile
Gets replaced by the Filename of the last successful file transfer. The value remains valid until the next
successful file transfer. NOTE: The Kermit XCMD does not update this value.
$Date
$DateTimeStamp

•! If the clock is set to the year 2000 or beyond, $Date and $DateTimeStamp would fail with a random error
message. Fixed.

$LongYear
Gets replaced by the four digit year (e.g., 1996) so scripts can be written to handle the year 2000 and beyond.
$ReceiveFType
Gets the filetype (in decimal) that is assigned when a received file’s filetype/auxtype is unknown.
$ReceiveAType
Gets the auxtype (in decimal) that is assigned when a received file’s filetype/auxtype is unknown.
$Trigger
Returns the value of the last trigger string that was seen. Returns 0 if no triggers have been seen since the start
of the script. Typically this replacement item would be used only in a trigger handler routine.
$Buffer
Gets replaced by the size of the contents of the capture buffer.
$FullTime
This now strips any trailing spaces (applies only to 24-hour time format).
$ErrorMsg
Some of the messages have changed for clarity. For example, “Parameter not assigned” is now “Required
parameter is missing.”
$ErrorCode
Only valid after a disk access error occurs
Gets replaced by the hexadecimal code for the disk access error that occurred. See the “Error.Codes” file in the
Documentation folder for a list of possible errors.

Specially Treated Characters 60

$FilePos#
must be replaced by a number from 0 to 9
Gets replaced by the character position of the “expected” file marker for the specified file number. If $FilePos3 is
7 then the next character that is read from file 3 will be the 7th character in the file; if a character is written then
the 7th character in the file will be overwritten.
$ActualFilePos#
must be replaced by a number from 0 to 9
Gets replaced by the actual file marker position for the specified file number. This value will match the $FilePos#
value unless a Set FilePos command has been used (in which case $ActualFilePos# shows the true file
position, while $FilePos# shows the desired file position).
$EOF#
must be replaced by a number from 0 to 9
Gets replaced by the character position of the last character in the specified file (the End Of File marker).
$EditorSize#
must be replaced by a number from 0 to 9
Gets replaced by the number of characters in the given script editor.
$EditorFile
Gets replaced by the name of the file in the editor (if the editor has been saved).
$LastScriptPath
Gets replaced by the Foldername of the script which chained to the currently-running script. If the currently-
running script was not chained to, or was chained to from a script in the Editor, then $LastScriptPath is "".
$LastScriptFile
Gets replaced by the Filename of the script which chained to the currently-running script. If the currently-running
script was not chained to, or was chained to from a script in the Editor, then $LastScriptFile is "".
$ReplyQuote
Gets replaced by the quote string (see Set ReplyQuote).
$Quote
Gets replaced with the current quote character (see Set Quote).
$Token
Gets replaced with the current token character (see Set Token).
$Baud
Gets replaced by the current baud rate, in the format used by the Set Baud command (i.e. 2400 or 9600).
$DFormat
Gets replaced by the current data format, in the format used by the Set DFormat command (i.e. 7E2 or 8N1).
$Duplex
Gets replaced by the current duplex setting, in the format used by the Set Duplex command (i.e. HALF or
FULL).
$Echo
Gets replaced by the current echo setting, in the format used by the Set Echo command (i.e. OFF or ON).
$StatLine
Gets replaced by OFF or ON to indicate the state of the status line.
$ChatLine
Gets replaced by OFF or ON to indicate the state of the chat line.
$SendLines
Gets replaced by the line break position, as set by the Set SendLines command.

Specially Treated Characters 61

$Hit
Gets replaced by the number of the last Hitzone that was clicked.
$Update
If a screen update occurred on a super hires display, $Update is set to 1. This is useful for advanced scripts that
may need to redraw special screen elements (rectangles, icons, etc.).
$Dialed
Intended for use in a logon script. Gets replaced by a null string if no phone number was dialed (i.e. the
phonebook entry did not have a phone number attached). It is replaced by “Yes” if a phone number was dialed.
$PBMethod
Gets replaced by a “T” or “P” to indicate Tone or Pulse dialing, as set by the last-accessed phonebook entry.
$PBNumber
Gets replaced by the phone number of the last-accessed phonebook entry.
$PBDisplay
Gets replaced by the name of the Online Display that is attached to the last-accessed phonebook entry.
$PBRedial
Gets replaced by the redialing options set for the last-accessed phonebook entry.
$PBFile
Gets replaced by the Filename of the script (if any) that is attached to the last-accessed phonebook entry.
($LogonFile is still valid for compatibility with version 1.)
$PBPath
Gets replaced by the Foldername of the script (if any) that is attached to the last-accessed phonebook entry.
$SEDirty#
must be replaced by a number from 0 to 9
Gets replaced by 1 if the specified script editor has been changed since being loaded or saved; null if the editor
has not been changed.
$EditorDirty
Gets replaced by “1” if the editor contents need to be saved; otherwise it is null.
$BufferDirty
Gets replaced by “1” if the capture buffer needs to be saved; otherwise it is null.
$AutoSaveBuffer
Gets replaced by the state of the AutoSaveBuffer flag.
$EditorHandle#
must be replaced by a number from 0 to 9
Gets replaced by the memory address of the TextEdit handle that holds the data for the specified script editor.
For use when communicating with External commands.
$FailureCode
After a command that waits for port input, if Failed is true then $FailureCode gives the reason the command
failed:

0 = Other source (e.g. a Hitzone)
1 = Timeout was reached
2 = IdleTimer was reached

$DoHangup
After using the Get File command with a Kind of 3 (launchable applications), $DoHangup indicates whether the
“Hangup” option was checked (1 means yes; null means no).

Specially Treated Characters 62

$DoReturn
After using the Get File command with a Kind of 3 (launchable applications), $DoReturn indicates whether the
“Return to Spectrum” option was checked (1 means yes; null means no).
$FreeMem
Provides the number of bytes of real free memory currently available.
$DisplayOpen
Gets replaced by ON or OFF depending on whether the current online display is open or closed.
$FileID#
must be replaced by a number from 0 to 9
Gets replaced by the GS/OS ID of an open file. The returned value cannot be directly used within any script
commands. It is intended for use by XCMDs that can support the direct handling of an open file.
$Date2
Gets replaced by the date using a LongYear value. (e.g. 3 Nov 1993, 17 Sep 2000)
$DateTimeStamp2
Gets replaced by the date/time string using the LongYear value. (e.g. D17Sep1994T1040)
$Year2
This is the same as $LongYear. And is provided for compatiblity with the new LongYear replacement values.
$ChainLevel
Gets replaced by the current level in the Chainback sequence. The returned value will be from 0-16.
$Signature
Gets replaced by the Signature string if it has been defined.
$BufferSize
$ScrollSize
$PortSize
Gets replaced by the size of the defined buffers. Note that this is the maximum size of the buffer as defined, not
the size of its current contents.
$BufferSaved
Gets replaced by a NULL string if the buffer has been saved, or a ‘1’ if not. Use this in conjunction with the
$BufferDirty variable.
$TCPInstalled
Gets replaced by ON or OFF depending on whether the Marinetti TCP/IP Cdev is installed or not.
$SerialActive
Gets replaced by ON or OFF depending on whether the serial mode has been selected or not
$TCPActive
Gets replaced by ON or OFF depending on whether the TCP/IP mode has been selected or not
$TCPOnline
Gets replaced by ON or OFF depending on whether TCP/IP is connected or not.
$TCPError
Gets replaced by the last error to be reported by Marinetti when a TCP/IP command failed.
$TCPIPID#
must be replaced by a number from 1 to 32
Gets replaced by the socket number used by scripts, from a logical connection number used by manual
connections. This allows a script to pick up and use any sockets that have been logged into manually.

Specially Treated Characters 63

$ActiveSocket
Gets replaced by the ID # for the current TCP/IP connection. This value can be used subsequently in some of
the TCP/IP script commands.
$FreeSockets
Gets replaced by the number of free sockets available. The returned value will be in the range of 0 to 32.
$TCPConnectName
If TCP/IP is active, this returns the name of the current Link Layer set within the TCP/IP CDev.
$TCPMessages
Gets replaced by ON or OFF depending on whether messages are currently being displayed for TCP/IP actions.
$TCPMode
Gets replaced by a value representing the current mode set for TCP/IP.

1 = data returned through port vectors
2 = data returned through port vectors (Telnet mode)
3 = data only returned through Get TCPData and Get TCPHandle

$TCPNotify
Gets replaced by ON or OFF depending on whether switching between active sockets is recorded in the capture
buffer.
$IPAddress
If TCP/IP is active and online, gets replaced by the local address of the TCP/IP stack in the format
“123.456.789.012”.
$EOLChar1
Gets replaced by the first character of the two EOL characters, range 0-255.
$EOLChar2
Gets replaced by the second character of the two EOL characters, range 0-255.
$FlushChar
Gets replaced by the character used to flush a line, range 0-255.
$FlushFrequency
Gets replaced by the value used to determine the maximum length of line that will be transmitted, range 1-512.

Parameters 64

Parameters

VarNum becomes Varname
Spectrum now supports named variables—there is no longer any such thing as a “VarNum”! Every place you
see “VarNum” in the script manual, substitute “Varname”.
Spectrum still supports the ten numbered variables (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). With the exception of those
default variables, variable names must start with a letter.
Variable names can contain any combination of letters and numbers, up to 32 characters long. Uppercase/
lowercase does not matter (i.e., MYNUM, mynum, MyNum, and mYnUm are all the same variable, regardless of
the CaseSensitive setting).
The only naming restriction is that you cannot create a variable based on the name of a built-in replacement
item. For example, you cannot use “Date” because it is a built-in replacement item, nor can you use variable
names that begin with Date (e.g., “DateOfCall” or “Date2”). You may, however, use names such as “MyDate”.
NOTE: An “Assigned name is reserved” script error occurs if you attempt to use an existing replacement name.
Named variables work just like the numbered variables work: any place a VarNum was accepted, a Varname
can now be used. The only minor difference between the two kinds of variables is that variables 0-9 are always
defined and pre-set to null ("") by default, but named variables are not defined until they are created.
This means that when running a fresh script, displaying $0 will show nothing (because var 0 is pre-set to ""), but
displaying $Something will show “$Something” on the screen because a variable named “Something” has not
been created yet.
New named variables are created explicitly (e.g. Set Var MyNamedVar "Hi there!") or implicitly (e.g. Multiply 41 8
TheResult). Simply referring to a variable (i.e. using "$SomeVariable") does not create it.
In summary, numbered variables and named variables are nearly identical. The differences are:

•! Numbered variables always exist; Named variables exist only after they are created.
•! Certain commands (such as Store Vars, Restore Vars, Clear Vars, etc.) operate only on the ten numbered

variables.
•! Certain commands (such as Delete Vars) work only on named variables.

Tips for Advanced Users
When setting a variable (Set Var MyColor "Blue") or accessing its contents ($MyColor) Spectrum must first find
the exact variable being referenced before it can work with it.
Initially the variable name table is very short, but as you create new variables the table of variable names is
expanded. The more variables you have, the longer the table is, and the longer it takes to search the table.
The search speed is not a concern unless you define hundreds of variables, but even then the search can be
optimized by using shorter variable names, or long names that are unique in the first few characters.
For example, using variables named “My1VariableName” through “My99VariableName” will be faster than using
variables named “MyVariableName1” through “MyVariableName99”. And using “M1” through “M99” will be even
faster.
If you anticipate defining many variables, consider combining several pieces of information into a single variable.
For example, instead of having 100 different variables to remember a “yes/no” response you could use a single
variable to remember each response (e.g. “YYNNNYYN…”) and use the Substring/Overlay String commands to
get and set the appropriate character.
Also, to keep the variable name table short, use the Delete Variables command to delete any variables created
for temporary use.

String
A String can now contain up to 256 Characters (the previous limit was 128). Accordingly, this means that
Variables, FKeys, Passwords, etc. can store up to 256 characters each.

Script Development 65

Script Development
•! Extra spaces, commas, and hard spaces no longer affect command recognition (e.g. “if contains” is now

recognized as being the command “if contains”).
Set Debug State {"FoldernameFilename"}
State can be External, File, Screen, Scrollback, or Off
FoldernameFilename is required when State is File, and must not be present for all other States
This command works like it did in version 1, with these additions:
•! When Spectrum is executing a script returned from an XCMD, the debug statement shows “XCMD –=>”

instead of “DEBUG –=>”.
•! “Set Debug External” broadcasts debugging information to Spectrum External Commands, in case there is an

XCMD that wants to handle debugging in a custom way. A “Debug” XCMD is provided as an example to show
what is possible.

•! “Set Debug File” directs Scrollback data into the specified FoldernameFilename instead of to memory. This
option significantly slows down script execution because the file is updated frequently. It is recommended the
file be created on a RAM disk or a fast hard drive.

•! If “Set Debug File” was active and the disk gets full, subsequent file saves would result in an invalid reference
number error. Fixed. Now if the disk gets full, the file is closed and debugging is turned off.

Set DebugTimeInfo State
State can be Off or On
When debugging with this setting turned on, the debug statement includes time information which can be used
to optimize scripts.

Fundamental Commands 66

Fundamental Commands
Clear Screen
Clears and resets the screen as if File/New was chosen.
DirectTransmit "String"
Transmits String directly out the port, without giving the Online Display any opportunity to alter the string (unlike
the Transmit command which sends outgoing characters through the Online Display).
Transmit "String"
Shortcut: Xmit "String"
•! If Duplex is Half and Set Screen is Off, then this will not open the online display.
•! Now complains if too many quotes appear.
Clear Clipboard
Clears the Clipboard of any content. An empty Clipboard can speed up the operation of some script commands.
Open Help Value1 Value2 Value3
Optional: Value1 = Subject, Value2 = Topic, Value3 = TargetString
Opens the !Help! NDA, and if the optional Subject, Topic, TargetString are specified, will attempt to scroll to that
position.
Close Help
Closes the !Help! NDA.
Set FKey Menu Value MenuValue
Value is a number from 0-9 for the OA-Fkey, MenuValue is a number from 1-51
Assigns specific menu items to an FKey instead of the usual “String”. This allows those menu items to be fired
as easily as if they had a Key Equivalent. The file transfer items are probably the most useful items that can be
assigned

MenuValues!! Phone-TCP/IP Menu
! ! 1! ! Switch TCP/IP
! ! 20-51! ! TCP/IP sockets 1-32
MenuValues!! Receive File Menu
! ! 2! ! CIS B+
! ! 3! ! XModem
! ! 4! ! 1K XModem
! ! 5! ! 4K XModem
! ! 6! ! YModem Batch
! ! 7! ! YModem-g
! ! 8! ! ZModem
MenuValues!! Send File Menu
! ! 9! ! CIS B+
! ! 10! ! XModem
! ! 11! ! 1K XModem
! ! 12! ! 4K XModem
! ! 13! ! YModem Batch
! ! 14! ! YModem-g
! ! 15! ! ZModem
MenuValues!! BabelFish Menu
" ! 16! ! Import
! ! 17! ! Export

Play Sound "Name"
This command now plays any sound that can be seen by the resource manager, not just sounds stored in the
*:System:Sounds: folder. NOTE: Resource names are case sensitive.

Fundamental Commands 67

Play Event Value
Plays the sound for the specified event at the volume specified in the Sounds Control Panel. NOTE: In order to
play sounds the Sounds CDEV must be installed and active, and the “Sounds” checkbox must be on in the
Online Display Settings dialog box.
Example:

Play Event $$8 # bad keypress
Play Event $$100 # You have mail

The standard Sound CDEV does not list all these sound events. Run the “SoundPatch” utility to add listings for
most of these events.

Sound EventsSound Events
0000 Alert stage 0 0053 Alert note

0001 Alert stage 1 0054 Alert caution

0002 Alert stage 2 0060 Screen blanking

0003 Alert stage 3 0061 Screen unblanking

0004 Outside window 0070 Beginning long operation

0005 Operation complete 0080 Application launching

0008 Bad keypress 0081 Application quitting

0009 Bad input value 0100 You have mail

000A Input field full 0E00 Error window base

000B Operation impossible 0EFF Error window other

000C Operation failed 0F00 Visual sound

0011 GSOS to P8 0F80 File transferred

0012 P8 to GSOS 0F81 Real time message

0013 Disk inserted 0F82 File transfer failed

0014 Disk ejected 1000 Connected to service

0015 System shut down 1001 Disconnected from service

0016 Volume changed 1002 Entered real time chat

0030 Disk request 1003 Left real time chat

0031 System startup 1004 Entering Forum/RT area

0032 System restart 1005 Leaving Forum/RT area

0033 Bad disk 1008 Modem-Dialing

0034 Key click 1009 Modem-Hanging up

0035 Return key 100A Modem-No carrier

0036 Space key 100B Modem-Connected

0040 Whoosh open 1010 Feature enabled

0041 Whoosh closed 1011 Feature disabled

0042 Fill trash 1012 Taking screen shot

0043 Empty trash 1020 Reading message

0050 Alert window 1021 Sending message

0052 Alert stop

Settings 68

Settings
Save Settings "FoldernameFilename"
FoldernameFilename is optional
Saves Spectrum’s current settings to disk If no file is specified, settings are saved to the current settings file. If a
file is specified then settings are saved to that file, and it becomes the current settings file.
•! Would not save to a file unless it already existed. Fixed.
•! Neither filters nor passwords were being copied over to the new settings file, and a subsequent Load Settings

would not restore the phonebook.
Load Settings "FoldernameFilename"
FoldernameFilename is optional
Loads Spectrum’s current settings from disk. If no file is specified, settings are loaded from the current settings
file. If a file is specified then settings are loaded from that file, and it becomes the current settings file.
Set ScrollData Kind
Kind can be Raw or Filtered
Determines how incoming data is stored into the Scrollback buffer. Raw stores the actual data that was
received; Filtered stores data after it has been processed by the online display (i.e. the same information that
appears in the Capture Buffer).

Set ReplyQuote "String"
String can be 1-16 characters
Sets the quote format used when choosing Paste As Reply from the Edit menu.

Online Display Settings
Set OnlineDisplay "Display"
•! The Failed flag was not being set or cleared correctly to indicate whether this command succeeded. Fixed.
•! This command now clears any defined Hitzones.
•! Setting Display to “Spectrum SHR Fast” or “Spectrum SHR Normal” actually selects the combined “Spectrum

SHR” display.
Close OnlineDisplay
Shortcut: Offline
Closes the current online display and displays Spectrum’s 640 mode desktop.
IMPORTANT: This command no longer causes the script to stop (because scripts can now operate even when
the Online Display is not open). For full compatibility with version 1, edit any version 1 scripts so that “Close
OnlineDisplay” is followed by the “Stop Script” command.
Clear Desktop
Closes all Spectrum windows and NDAs, displaying Spectrum’s 640 mode desktop.
Set NullStrip ON/OFF
Controls the removal of nulls in the input stream to the screen. The default setting is ON.

File Transfer Settings
Set RelaxedXfers State
The state of this setting is now stored in the preferences file, if settings are saved.
Set FileXferPath "FoldernameFilename"
Sets both the ReceivePath and SendPath locations to the specified folder. Setting to an empty path ("") clears
the paths and files will be received into/sent from the most recently-accessed folder.

Settings 69

Set MacBinary Status
Status can be On, Off, NoRez, Rez, Downloads
Sets the MacBinary setting, and can alter the Binary2 settings. Refer to the following table:

Set ReceivePath "FoldernameFilename"
Sets the default path used when receiving files. Setting to an empty path ("") clears the path and received files
will be stored in the most recently-accessed folder.
Set SendPath "FoldernameFilename"
Sets the default path used when sending files. Setting to an empty path ("") clears the path and files will be sent
from the most recently-accessed folder.
Set ReceiveFType Value
Value can be 0-255 ($$00-$$FF)
Sets the filetype to assign when a received file’s filetype/auxtype is unknown.
Set ReceiveAType Value
Value can be 0-65535 ($$00-$$FFFF)
Sets the auxtype to assign when a received file’s filetype/auxtype is unknown.
Set AutoReceive State
State can be Off, On, BPlus, or Zmodem
Controls the “Auto B+” and “Auto Z” checkboxes.

Off: Turns off both checkboxes.
On: Turns on both checkboxes.
BPlus: Turns on the BPlus checkbox.
Zmodem: Turns on the Zmodem checkbox.

Set BinaryII State
State can be Downloads, Uploads, Off, or On
Works as described in the Scripting manual, except Downloads and On will no longer uncheck the “Resume
Transfers” checkbox (because resume now works regardless of the receiver’s BinaryII setting).
Set SendLines State
State can be Off or On, or a number from 10-65535
Controls how text files and ScriptEditors are sent. Off sends files as-is; On splits paragraphs into lines of
approximately 73 characters each; a Value splits paragraphs into lines of approximately the specified number of
characters.

Script Command Binary2
Down

MacBin
Down

Binary2
Up

MacBin
Up

Allow
Rez

Binary2 On - - sets clears clears

Binary2 Off clears - clears clears clears

MacBinary On - - clears sets sets

MacBinary Off - clears - clears clears

MacBinary Rez - - - - sets

MacBinary NoRez - - - - clears

Binary2 Up - - sets clears clears

Binary2 Down sets - - - -

MacBinary Down - sets - - -

Dialing & TCP/IP Commands 70

Dialing
Dial Service "PhonebookEntry"
Instead of generating a script error, now the Failed flag is set if the specified phonebook entry does not exist.
Dial Entry Value
Instead of generating a script error, now the Failed flag is set if the specified phonebook entry does not exist.
Get ServiceInfo "PhonebookEntry"
Establishes the port settings for the specified phonebook entry, and updates all the $PB_ replacement items so
they reflect the information stored in the phonebook entry. The Failed flag is set if the specified phonebook entry
does not exist.
Connected
Scripts should issue this command any time they establish a connection with another computer or modem.
Onhook
Scripts should issue this command any time they close a connection (or when they know a connection has been
broken) with another computer or modem.

TCP/IP Commands
Note: When in Telnet mode, the setting of Half Duplex will be ignored.
Switch TCP/IP
Disconnects the Serial Port and switches control to the TCP/IP environment. Note that this may terminate an
active Serial connection.
TCPConnect
If currently offline, makes a TCP/IP link through the the TCP/IP CDev. It simply makes the initial link to your ISP,
it does not open a socket Connection to a target host. If TCP/IP was already linked, this command will do
nothing and will not set the Failed flag. The Failed flag will be set if the link failed.
TCPDisconnect
If currently online, will disconnect all active Connections and then disconnect the line from your your ISP. If
TCP/IP was already disconnected, this command will do nothing and will not set the Failed flag. The Failed flag
will be set if the command failed to disconnect.
Open TCPSocket "AddressString" Value VarName MenuName
"AddressString" is a dotted address in the format "123.456.789.123:23" or
"AddressString" is an address in the format "delphi.com"
Value can be from 1 to 3 (Mode)
 1 = data returned through port vectors
 2 = data returned through port vectors (Telnet mode)
 3 = data only returned through Get TCPData and Get TCPHandle
Varname returns a Socket number
The optional MenuName is a String maximum 18 characters
Links if not already Linked (See TCPConnect), and then opens a connection to the IP address and port in
"AddressString" using the Mode given in Value. Up to 32 connections may be open at once. See
documentation for TCP/IP for further details.
If the optional MenuName is given, it will be used to name the inserted menu item for that connection. The
Timeout setting will be respected, with a maximum wait of 60 seconds. The Failed flag will be set if the
Connection could not be opened.

Dialing & TCP/IP Commands 71

Close TCPSocket Value
Value must be a valid Connection Number (Socket)
Closes the Connection. Sets the Failed flag if the Connection was not open or could not be closed.
Check TCPSockets
Checks through all the active Sockets, and if any have been closed, and there is no data waiting to be sent or
received, will log them out and return any TCPClosedResponse strings that have been set.
Set TCPActiveSocket Value Value1
Value must be a valid Connection Number (Socket)
The optional Value1 can be from 1 to 3 (Mode)
Changes the active connection for the data streams. This allows you to control a number of connections
simultaneously. Sets the Failed flag if the Connection is not open.
Get TCPData "LineEndMarkerString" VarName Socket
"LineEndMarkerString" is a unique set of characters
Control and Quote characters are stripped from the returned Varname.
The Socket is optional.
TCP/IP must be active and an online connection must be made before this command will complete. Returns up
to 256 characters from the active Connection or the optional Socket. When the LineEndMarkerString is received,
the line is stored into the specified Varname. The LineEndMarkerString is not included in the returned Varname.
You may wish to set Mode 3 for use with this command. Sets the Failed flag if not online or no data was waiting.
Get TCPEditor "LineEndMarkerString" EditorNumber Socket
"LineEndMarkerString" is a unique set of characters
Full 8 bit data integrity is retained in the returned EditorNumber
The Socket is optional.
TCP/IP must be active and an online link must be made before this command will complete. Accepts characters
from the active Connection or the optional Socket. When the LineEndMarkerString is received the line is stored
into the specified EditorNumber. The LineEndMarkerString is not included in the returned EditorNumber. You
may wish to set Mode 3 for use with this command. Sets the Failed flag if not online or no data was waiting.
Get TCPHandle EditorNumber Socket VarName
Full 8 bit data integrity is retained in the returned EditorNumber
The Socket is required.
TCP/IP must be active and an online link must be made before this command will complete. Accepts characters
from the designated Socket or the active connection if Socket = 0. If no data was waiting, the Editor will be
returned empty. The VarName returns the current Status value for the socket. You may wish to set Mode 3 for
use with this command. Sets the Failed flag if not online.
Send TCPData "String" Socket
Socket is optional
Sends the String directly to the active Connection or the optional Socket. No Telnet translation is made by this
command. Sets the Failed flag if not online.
Send TCPEditor EditorNumber Socket
Socket is optional
Sends the EditorNumber directly to the active Connection or the optional Socket. No Telnet translation is made
by this command. Sets the Failed flag if not online.
Flush TCPSendBuffer
Flushes any waiting data in the TCPSendBuffer to the active Connection. Data is normally flushed at each
character in Telnet mode, or when the TCPFlushChar being seen in the output flow. This command allows any
waiting data to be flushed before that character is seen. Sets the Failed flag if not online.

TCP/IP Commands 72

Get TCPStatus Value VarName
Value must be a valid Connection Number (Socket)
Returns the Status of the Connection:

 0 = tcpsCLOSED ! 1 = tcpsLISTEN
 2 = tcpsSYNSENT ! 3 = tcpsSYNRCVD
 4 = tcpsESTABLISHED ! 5 = tcpsFINWAIT1
 6 = tcpsFINWAIT2 ! 7 = tcpsCLOSEWAIT
 8 = tcpsLASTACK ! 9 = tcpsCLOSING
 10 = tcpsTIMEWAIT

See the TCP/IP documentation for more details. Sets the Failed flag if the Connection is not open or if not
online.
Set TCPClosedResponse Value "String"
Value must be a valid Connection Number (Socket)
If the Connection closes, the "String" will be inserted into the input stream. This allows scripts to monitor a
Connection by using a WaitFor or Trigger command. Sets the Failed flag if the Connection is not open or if not
online.
Set TCPEOLTranslation Value Value1
Value can be from 0 to 255
Value1 is optional and can be from 0 to 255
Normally the EOL character will be sent “as is” to the active Connection. By changing its value, you can
translate this to a specific character required by a particular system. You might wish to change a Return to a
Return/Line Feed pair, or a Return to a Line Feed.
Set TCPFlushChar Value
Value can be from 0 to 255
Sets the character that is used to trigger flushing the output buffer to the active Connection for modes 1 and 3.
This defaults to a Return.
Set TCPFlushFrequency Value
Value can be from 0 to 512
The output buffer can hold a maximum of 512 characters. You can change this value to flush data more
frequently to the active Connection. Note that in Telnet mode 2, the buffer is flushed as each character is sent.
Set TCPMessages State
State can be Off, On
If connecting manually, you can turn off the display of the various progress messages shown by TCP/IP.
Set TCPNotify State
State can be Off, On
Normally a message is displayed on screen and put into the capture buffer when a service has been manually
switched. This turns on and off the display of that message.
Set TCPReconnect State
State can be Off, On
Controls whether TCP/IP attempts to reconnect or not when a Connection is started.
Get TCPServiceEntry Value VarName
Value can be from 1 to size of Service list
Value can also be an entry name from the list
Extracts the “dotted address” or “host.name” of the specified Service list entry and stores it in the specified
variable. If the entry does not exist, then the Failed will be set. If a name was specified, the match will respect
the current state of the CaseSensitive flag.

TCP/IP Commands & Variables 73

Script and Program Control
Run "FoldernameFilename" Label
Label is optional
Resets many script parameters then runs the specified script. If Label is given control passes to the specified
label in the new script. If the label does not exist then a “label not found” error occurs.
Chain "FoldernameFilename" Label
Label is optional
Passes control (or “Chains”) to the specified script, preserving all the settings that are normally reset when a
script is Run. If Label is given then control is passed to the specified label in the new script. If the label does not
exist then a “label not found” error occurs. REMINDER: Chaining to a script does not preserve the current For/
Next loops, nor does it preserve the “Gosub” stack.
Chainbacks can now be nested to 16 levels. This allows much more flexible use of the “Chain’ command, as
using shorter scripts will always speed script execution.
Chainback
Loads the script that chained to the currently-running script ($LastScriptPath$LastScriptFile) and resumes
executing script commands at the statement after the Chain command. If the currently-running script was not
chained to, then Chainback stops the script.
POP Chainback
POP All Chainback
These commands “pop” or remove one or all of the Chainback levels.
Launch / Exit / Quit
These commands now set prefix 0 and 8 to the folder of the application being launched, which resolves path
problems when launching some ProDOS 8 programs.
Quit2
This command works exactly like the “Quit” command, except it does not hangup first.

Variables
CompareStrings "String1" "String2" Varname
Compares the two strings using the Toolbox’s _CompareStrings command, which is used when sorting most
lists (filenames, etc.). The compare is always case insensitive.
Make CaseChange "String" Value Varname
Value can be a number 1-4
Depending on the Value, makes a change to the case of String and returns the results in Varname. The valid
Values are:

1 = UPPERCASE
2 = lowercase
3 = First letter of each sentence is capitalized. Like this.
4 = Capitalize Each Word

Store Variables
Shortcut: Store Vars
Stores the current values of the ten numbered variables (0 through 9). It does not store any named variables.
Restore Variables
Shortcut: Restore Vars
Restores the ten numbered variables (0 through 9) to the previously-stored values. It has no effect on any
named variables.

TCP/IP Commands & Variables 74

Clear Variables Varname1, Varname2 … Varname#
Shortcut: Clear Vars
Varnames are optional
Clears the specified variable names to "". If no variable names are specified, the ten numbered variables (0
through 9) are cleared to "".
Delete Variables Varname1, Varname2 … Varname#
Shortcut: Delete Vars Varname1, Varname2 … Varname#
Deletes the specified variable name(s) from the internal table of variable names.
Match String "TheLine" "String1" … "String#"
Looks to see if String1 exists anywhere within TheLine. If so then $Matched is set to “1”, $MatchString is set to
String1, and the Failed flag is cleared. If String1 is not found within TheLine then the other strings are checked
(the only limit on the number of strings is how many can fit into the script expansion buffer).
If no match is found then $Matched is set to “0”, $MatchString is set to "", and the Failed flag is set.
Strip Spaces "TheString" Varname
Deletes all space characters from TheString and stores the results in Varname.
Trim Spaces "TheString" Varname
Deletes only the leading and trailing spaces from TheString and stores the results in Varname.
Overlay String "String1" "String2" Start Varname
Start can be from 1 to 256
Overlays String2 on top of String1, starting at character position Start, and stores the result string into the
specified Varname. The Failed flag is set if String2 cannot be overlaid into the existing space used by String1.
For example:

Overlay String "12345" "ABC" 1 9
var 9 is now "ABC45"
Overlay String "12345" "ABC" 3 9
var 9 is now "12ABC"
Overlay String "12345" "ABC" 4 9
the Failed flag is set because "ABC" cannot be overlaid onto "12345" starting at position 4 (var 9 is set to "12345")

Insert String "Original" "New" Position Varname
Position can be from 1 to 256
Inserts the New string into the Original string at character Position. If the combined string exceeds 256
characters the result is truncated to 256 characters and the Failed flag is set.
Example:

Loop
Display "Insert where? "; Input Line Position
Insert String "****" "NEW" $Position Result
Display "Result is '$Result'.^M"; Goto Loop
the results:
0 - script error; run the script again
1 - NEW****
2 - *NEW***
3 - **NEW**
4 - ***NEW*
5 - ****NEW
6 through 256 - ****NEW
257 or higher - script error

Delete String "TheString" Start Length Varname
Start can be from 1 to 256
Length can be from 1 to 256
Deletes Length characters from TheString, starting at position Start. If Start is 0 or Start is greater than the
length of TheString the Failed flag is set and Varname is set to TheString.

Variables & Getting Input 75

Example:
Delete String "12345" 1 3 9
var 9's now "45"
Delete String "12345" 3 3 9
var 9's now "12"
Delete String "12345" 3 256 9
var 9's now "12"

Evaluate "Expression" Varname
Evaluates the given string expression and sets Varname to the result. Valid operators are () + – * / ^ ÷ and –
(the last two operators are Option-/ and Option-Minus, respectively). NOTE: To use the “power of” operator (^)
you must type it twice (^^).
The calculations are made on whole Integer numbers, so any remainders from divisions are lost, with the
number being rounded down.
The Failed flag is set if Expression is not a valid math expression (i.e. there are characters other than numbers,
operators or spaces, the parentheses are not balanced, etc.). The Failed flag is also set if any intermediate
calculation overflows 32 bits (4,294,967,296), or if parsing the expression overflows the internal 256-byte
parsing buffer.
Finally, the Failed flag is set if the result is a negative number, because negative numbers are not valid
elsewhere in Spectrum’s scripting language. However, in this case the result Varname will contain the positive
answer (i.e. if an expression is calculated to be –5 then the Failed flag will be set and Varname will be set to 5).
Example:

Evaluate "2+(3^^4)-2+(3^^2)-3*4+(6/3+(12/4))" Result
Display "The result is $Result.^M"
Evaluate "2^^$Day" Result
Display "The result is $Result.^M"

Getting Input
Ask1 "Question" "Button1" VarName {Value}
Ask2 "Question" "Button1" "Button2" VarName {Value}
Ask3 "Question" "Button1" "Button2" "Button3" VarName {Value}
Question is a string up to 68 characters long
Button# is a string up to 12 characters long
Value is a number 0 to 65535
Version 2.0: Instead of the question being restricted to 68 characters long, these commands now accept
questions up to 255 characters long (the size of the alert window is adjusted automatically so the message will
fit).
Version 2.1: Added an optional value that specifies the number of seconds to wait for a response. If the user
doesn’t respond within that many seconds, the default button is clicked automatically. If there is no default
button, and all the buttons have the same first character, then a SysBeep occurs and the Ask alert will not go
away.
Ask1 and Ask2 use the “cool” button layout. Due to formatting problems with Ask3 if the button names are more
than a few characters, Ask3 still uses the older button layout.
Waitfor String "String1" "String2" … "String7" "String8"
•! Comments after the strings were being seen as target strings. Fixed.
•! Double letters could cause Waitfor String not to see a string it was waiting for. Fixed.

Getting Input & Branching and Loops 76

Set IdleTimer Value
Value can be from 0 to 65535
When waiting for input using any “Getting Input” command that gets data from the port, Spectrum monitors the
port activity. If the port is idle for Value seconds then the command will fail and Spectrum continues executing
the script.
This command works in conjunction with the Timeout value (Timeout fails the command after Value seconds
regardless of port activity, whereas IdleTimer fails the command after Value seconds of no port activity).
Example:

Set Timeout 120 # 2 minutes
Set IdleTimer 30 # 30 seconds
Transmit "Send me the entire file list!^M"
Waitfor String "END OF LIST"; If NOT Failed Then Display "The entire list was received within 2 minutes."; Stop

Script
otherwise the Waitfor command failed...
On $FailureCode GotoNext TimedOut, IdledOut
if here then $FailureCode is 0...
Display "Failed for some other reason (a Hitzone was probably clicked)."; Stop Script
TimedOut - after 2 minutes there's still port activity
Display "Still receiving the list."; Stop Script
IdledOut - gone 30 seconds with no port activity
Display "Either the list is complete but something happened that the 'end of list' string was not seen, OR the

host is disconnected/lost in space."; Stop Script
Read Char Varname
Accepts one character from the port and stores it into the specified variable.
If a timeout was used and time ran out, the Failed flag is set.
Read Line Varname
Accepts up to 256 characters from the port. When a Return character is received the line is stored into the
specified variable.
If a timeout was used and time ran out, the Failed flag is set and the specified variable contains the data that
was read so far.

Branching and Loops
IMPORTANT: The script keyword “GotoNext” cannot be separated as “Goto Next” (version 1 was more forgiving
of this error; version 2 will instead attempt to GOTO a label named “Next”).
On CarrierLoss Goto Label
On CarrierLoss GotoNext Label
If this command is active and Spectrum detects the transition from having a carrier to having no carrier, then
control will be passed to the specified label in the currently-running script.
This command does nothing unless “DCD Is Valid” is checked, the modem has been initialized properly, and the
modem is connected with a properly-wired modem cable.
On CompareStrings "String1" "String2" Goto LessLabel, EqualLabel, MoreLabel
On CompareStrings "String1" "String2" GotoNext LessLabel, EqualLabel, MoreLabel
Compares the two strings using the Toolbox’s _CompareStrings command, which is used when sorting most
lists (filenames, etc.). Based on the result of the comparison, script control jumps to LessLabel, EqualLabel, or
MoreLabel.
Set Labels State

Branching and Loops & Conditional Tests 77

State can be Off or On
Works as before, but adds support for an extended keyboard: Pressing function keys 1 through 15 will attempt
to “Gosub” to that label.
On Value Goto Label1, Label2 … Label#
On Value GotoNext Label1, Label2 … Label#
On Value Gosub Label1, Label2 … Label#
On Value GosubNext Label1, Label2 … Label#
These commands have been modified to allow as many labels as will fit in the script line buffer (currently 636
characters, minus the number of characters used for the command itself).
If Value is 0 or is greater than the number of labels supplied, the Failed flag is set and control continues to the
next statement. For example, the Display statement would be executed in this script:

On 5 Goto One, Two; Display "Didn't go anywhere"; Stop Script
For LoopNumber Start Stop Step
Works like version 1, except if the initial Start value is less than the initial Stop value the loop counts.
Example:

Display "1 to 100 by twos:^M^J"
For 0 1 100 2; Display "$ForValue0^I"; Next 0
Display "^M^J^M^J100 to 1 by twos:^M^J"
For 0 100 1 2; Display "$ForValue0^I"; Next 0

On Compare Value1 Value2 GoXXX LessLabel, EqualLabel, MoreLabel
GoXXX can be Goto, GotoNext, Gosub, or GosubNext
This command is similar to the Compare command, except that the result can be acted on immediately (an
intermediate variable to hold the result is not required):

If Value1 < Value2 then control passes to LessLabel
If Value1 = Value2 then control passes to EqualLabel
If Value1 > Value2 then control passes to MoreLabel

Conditional Tests
If False Varname Then Statement
If Varname is empty ("") or is “0” then Statement is executed.
If True Varname Then Statement
If Varname is not empty ("") and is not “0” then Statement is executed.
If Not Contains "ShortString" "LongString" Then Statement
If ShortString is longer than LongString then Statement is now executed.
If Null Varname Then Statement
If Null "String" Then Statement
If Null $EditorHandle# Then Statement
If a variable name is supplied and the variable is empty ("") then Statement is executed.
If a string is supplied (the current quote delimiters are required) and the string is empty ("") then Statement is
executed.
If an $EditorHandle# replacement item is supplied and the specified editor is empty ($EditorSize# is 0) then
Statement is executed.

Conditional Tests & Screen Appearance 78

If Not Null Varname Then Statement
If Not Null "String" Then Statement
If Not Null $EditorHandle# Then Statement
If a variable name is supplied and the variable is not empty then Statement is executed.
If a string is supplied (the current quote delimiters are required) and the string is not empty then Statement is
executed.
If an $EditorHandle# replacement item is supplied and the specified editor is not empty then Statement is
executed.
If Defined Varname Then Statement
If the specified variable name has been defined then Statement is executed.
If Not Defined Varname Then Statement
If the specified variable name has not been defined then Statement is executed.
If Desktop Then Statement
If the 640 mode SHR display with menu bar is showing then Statement is executed.
If Not Desktop Then Statement
If the 640 mode SHR display with menu bar is not showing then Statement is executed.
Else Statement
All “if” comparisons set a special flag that remembers whether the “if” statement was true or false. The “else”
command tests this flag and executes the rest of the line if the previous “if” statement was false. NOTE: “Else” is
a completely separate command; it is not an optional part of an “if” statement!
Using “else” clears the special flag, so multiple “else” statements do not work.
Example:

If Equal "A" "B" Then Display "EQUAL^M^J"
ELSE Display "NOT equal^M^J"
ELSE Display "This will never been displayed.^M^J"
change "B" to "A" and run again
also try using "If NOT Equal" and other conditional tests

Screen Appearance
Set Flush State
If Flush was On in version 1, processing incoming data had greater priority over executing the script commands.
In version 2 both functions are approximately equal priority, so script commands will execute regularly even if
lots of incoming data is pending.
Set ScreenBlank State
State can be Off, On, or Auto
Spectrum now completely controls the blanking (previously if Twilight II was active Spectrum would ask it to
blank the screen). Also, the border color is now set to black when blanked.
Set ScreenBlank OFF now just broadcasts the “systemSaysForceUndim” IPC message, so if Twilight II (for
example) blanks in the background, your script can include a Set ScreenBlank OFF command to force the
screen to be unblanked. NOTE: It is acceptable to issue “Set Screen OFF” even if the screen is already
unblanked.

Screen Appearance, Capture Buffer Control & Transferring Files 79

Set ScreenBypass Value
Value can be On or Off
Controls whether data is sent to the screen or not. If set to ‘Off’, it allows script execution to continue with a
closed screen. Note that this is not the same as “Set Screen Off” as the “WaitFor” and “Trigger” commands will
still operate. Effectively it operates as though a screen was open, but with no data showing on screen.
Set XferStatus Value
Value can be On or Off
Controls whether the Protocol Transfer Status box is shown during a file transfer.

Capture Buffer Control
Load Buffer "FoldernameFilename"
•! This command would overrun memory if the file was too big to be loaded. Fixed.
Append CaptureFile "FoldernameFilename"
Opens the specified text file and begins capturing incoming data to the end of it.
What’s new: If the specified file does not exist it will be created automatically. If the specified file is not a text file
then a script error is generated.
Set AutoSave "FoldernameFilename"
If AutoSave is specified, and AutoSaveBuffer is on, and Append is on, whenever the capture buffer fills it will be
automatically appended to the AutoSave folder and filename.
In version 1, if the AutoSave folder or filename was invalid, Spectrum would not save the buffer. In version 2
Spectrum gives the user the opportunity to manually Clear, Save, or Append it.

Transferring Files
Receive File Protocol

•! When receiving Zmodem, if the host did not start the transfer, or aborted the transfer before Spectrum’s
file transfer status window appeared, the script would pause for a very long time. Fixed.

Send File ZBatch "File1" "File2" ... "File3”
Send File ZBatch ScriptEditor
Send File YBatch "File1" "File2" ... "File3"
Send File YBatch ScriptEditor
File is the path to a file or a file in the Send file folder
ScriptEditor is a value from 0-9
Batch sends multiple files. These commands replace the functionality of the BatchXfer XCMD.

OS Utilities 80

OS Utilities
Rename "Foldername1Filename1" "Foldername1Filename2"

•! Renaming “FILENAME” to “Filename” would raise an error. Now the case is changed without generating
an error.

Copy File "Foldername1Filename1" "Foldername2Filename2"
Can now copy even very large (“tree”) files, where previously it showed an “access not allowed” error.
•! Now handles Macintosh-style OptionLists.
•! Now preserves original file creation date and time.

Get FileInfo "FoldernameFilename" Varname
Works as documented, with the following additions to the returned string:

Get FileInfo2 "FoldernameFilename" VarName
Complements the “Get FileInfo” command, but returns the LongYear instead of the two digit short year. This
makes the command Y2K compliant.
Set FileInfo "FoldernameFilename" "TT/AAAA"
TT is a hexadecimal filetype 00-FF
AAAA is an optional hexadecimal auxtype 0000-FFFF
Sets the specified file’s filetype and auxtype. The auxtype (AAAA) can be omitted and only the filetype will be
changed.
Get MacFileInfo "FoldernameFilename" Varname
Sets Varname to contain the Macintosh file’s Type and Creator. The Failed flag will be set if the file is not an
extended file.
NOTE: If the file has a “pdos” creator, Get MacFileInfo may return the filetype holding ASCII values that are not
printable. This is because with a creator of “pdos” you can have the filetype and auxtype embedded as Hex data
in the four characters of the Mac filetype.
Set MacFileInfo "FoldernameFilename" "TypeCrtr"
If the specified file is a Macintosh file then this command will set the file’s Type and Creator information.
Show File "FoldernameFilename" Start Stop
Start and Stop are optional
As in version 1, this command displays the file to the screen (and outputs it to the port if the Echo option is on).
What’s new:

•! The optional Start and Stop values let you show a specific portion of the file.
•! While showing a file, the Spacebar will alternately pause and restart the display.

Start Length Information
59 6 Creation date in the format

YYMMDD

65 4 Creation time in the format HHMM

69 6 Modification date in the format
YYMMDD

75 4 Modification time in the format
HHMM

OS Utilities 81

Get File "PromptString" Kind Varname
Works as it did in version 1, but Kind can now also be a 3 or 4.
When using a Kind of 3 the dialog box displays launchable applications and also contains two checkboxes that
let the user control whether the script should hang up before launching ($DoHangup), and whether quitting the
next application should return to Spectrum ($DoReturn).
When using a Kind of 4 the dialog box displays Teach and text files only (not Appleworks Classic).
Copy File "SourcePath" "TargetPath" Value
Value is optional

Value = 1 copies data fork
Value = 2 copies resource fork
Value = 3 copies both forks

Using the optional Value, you can copy either the data fork, resource fork, or both forks. In all cases, the target
file must already exist, or an error will be generated. The resource fork will be created if needed.
JudgeName "FoldernameFilename" VarName
Expands the FoldernameFilename and parses it to suit the FST of the destination volume pointed at by
Foldername.
Get Multifile "PromptString" Value ScriptEditor
Value = 0 Any file
Value = 1 Text only
Value = 2 Text, AppleWorks, Teach
Value = 3 Launchable Applications
Value = 4 Text and Teach
ScriptEditor is a value from 0-9
This complements the “Get File” command. It is primarily intended for use by the “Send Batch” commands.

Reading and Writing Files
NOTE: Scripts can now open 10 files and 10 catalogs (previous limits were 4 files and 4 catalogs).
Read File FileNumber Varname NumBytes
FileNumber can be from 0 to 9
NumBytes is optional; if used it is a value from 1-256
If the optional NumBytes parameter is not provided then this command behaves exactly as it did in version 1.
If NumBytes is specified then this command reads exactly that many bytes from the file (it does not check for
Return). If reading NumBytes passes the end of the file, the Failed flag is set and the variable contains the bytes
that were read successfully.
Write File FileNumber "String" NumBytes
FileNumber can be from 0 to 9
NumBytes is optional; if used it is a value from 1-256
If NumBytes is not specified then all the characters of the String are written; if NumBytes is specified then only
the first NumBytes characters of the String are written.
Set FilePos FileNumber Position
FileNumber can be from 0 to 9
After opening a file you can use this command to quickly move the file marker to a specific character position.
For example, Set FilePos 0 83 will set the file marker to the 83rd character in file 0.
If you set to a character position that is past the end of a file, the file length will not get extended until you begin
writing to that position.
For example, this script…

OS Utilities & Script Editor 82

Open File 0 ":Ram5:NewFile"
Set FilePos 0 10000
Set FilePos 0 10; Write File 0 "Word.^M"
Close File 0

…will result in a file that is only 15 characters long, not 10,000. To extend a file Spectrum writes as many Return
characters as necessary (in the example above, Return characters are written to position 1 through 9, so the
“W” of “Word” will start at the character position that was set).
Search File FileNumber "String"
FileNumber can be from 0 to 9
Searches the given file for the given string. The search starts at the current file position and proceeds toward the
end of the file.
If String is found then the Failed flag is cleared and the file marker is set to the first character after the string. If
String is not found then the Failed flag is set.

Reading Catalogs
Read Catalog CatalogNumber Varname
The information that is returned has been extended—see “Get FileInfo” in the OS Utilities section.
Read Catalog2 CatalogNumber VarName
Complements the “Read Catalog” command, but returns the LongYear instead of the two digit short year. This
makes the command Y2K compliant.

Script Editor
All script editor commands have been modified to allow an optional EditorNumber, a value from 0-9. If
EditorNumber is not present, editor number 0 is assumed:
Clear ScriptEditor EditorNumber
Send ScriptEditor EditorNumber
Print ScriptEditor EditorNumber
Apply Replace EditorNumber "FindString" "ReplaceString" Varname
Apply LowASCII EditorNumber
Apply RemoveControls EditorNumber
Apply LFsToCRs EditorNumber
Apply RemoveSpaces EditorNumber
Apply Special EditorNumber Value
Apply Format EditorNumber Value
Append ScriptEditor EditorNumber "Item" Kind
Load ScriptEditor EditorNumber "Item" Kind
EditorNumber is optional; if used it is a value 0-9
Item can be a FoldernameFilename, or can be ::Scrollback, ::Buffer, or ::Clipboard
Kind is an optional Varname

Script Editor, Error Control & Script Interpretation 83

Loads the specified data into the given ScriptEditor (Load replaces the script editor contents, while Append adds
the new data to the end of the specified script editor).
If Item is a file on disk, an optional Kind varname can be used which will be set to indicate what kind of file was
loaded: 1=Text, 2=Teach, 3=AppleWorks Classic.

•! This command can now load Macintosh text files, even if the file has a Macintosh resource fork.
•! If a Teach file was loaded, then a Text file was loaded, the ScriptEditor still thought it had a Teach file in it.

Fixed.
Save ScriptEditor EditorNumber "FoldernameFilename" Kind
EditorNumber is optional; if used it is a value 0-9
Kind is optional; 1 saves as a Text file; 2 saves as a Teach file; 3 saves as an AppleWorks Classic file
Saves the specified scripteditor to disk. If Kind is not specified then the format is Text (if a text or AppleWorks
Classic file was loaded) or Teach (if a Teach file was loaded). Otherwise the Kind value forces a specific file type
to be saved (only Teach saves any style information; the other formats only save the text from the specified
script editor).
Create ScriptEditor EditorNumber
Creates an empty scripteditor. If the scripteditor is already in use then the Failed flag is set and the existing
scripteditor is not changed.
Show ScriptEditor EditorNumber
Displays the specified scripteditor on the screen. Holding down the Option key pauses the display; pressing
Escape cancels the display.
Clear SEDirty EditorNumber
Clears the “dirty” flag for the specified editor.

Error Control
ResumeNext
Use only in an “On Error Goto” procedure
Continues running the script after the command that caused the error. NOTE: This can be confusing; it is
intended for advanced script authors.

Script Interpretation
Set Quote Character
A script error could occur when the quote character was set to something other than the standard character (")
and a line contained a semicolon:

Set Quote %
Display %This is fine.%
Display %This ; failed.%

This has been fixed (i.e. the second Display command will no longer fail).
Set Replacement Character
Changes the value normally used for the “$” substitution character.

Advanced Commands 84

Advanced Commands
Store Screen
Saves the current screen characters to an internal buffer. The Failed flag is set if a display is not open, or if the
opened display does not support the feature.
Restore Screen
Restores the screen characters from the previously-stored screen. NOTE: This command closes and re-opens
the Online Display for a proper update to occur. This is quick, but does cause a flicker on the screen.
The Failed flag is set if a display is not open, or if the opened display does not support the feature.
Define Trigger Value "String"
Value can be a number 1 to 16
String can be up to 256 characters
Defines a sequence of characters that Spectrum should watch for whenever it is processing incoming data. If
String is "" then the trigger is deleted, just as Delete Trigger
If the character sequence is seen and an “On Trigger Goto…” command is active, control passes to the
specified Label.
Note that triggers take precedence over the active command. For example, if “Waitfor String” is currently waiting
for “password” and a trigger has been defined to watch for “sword”, as soon as the “d” arrives the trigger causes
the “Waitfor String” command to fail (the Failed flag will be set) and control will pass to the trigger handler.
Get TriggerInfo Value Varname
Value can be a number 1 to 16
Sets Varname to the currently-defined trigger string.
Delete Trigger Value1, Value2, … Value#
each Value can be a number 1 to 16
Deletes the specified trigger number so its associated trigger string is no longer searched for.
Delete Triggers
Deletes all the triggers so no trigger is searched for.
On Trigger Goto Label
On Trigger GotoNext Label
When a defined trigger is seen, control jumps to the specified Label in the currently-active script, and the
$Trigger replacement item identifies which trigger was seen. As with other “On X Goto” commands, “Resume”
and “ResumeNext” will resume script execution where it was interrupted.
At the entry to Label, if the Failed flag is set then a script command was interrupted when the trigger was seen.
If the Failed flag is clear then the trigger was seen while Spectrum was flushing data to the screen.
Open ResFile FileNum "FoldernameFilename"
FileNum can be from 0 to 9
Opens the resource fork of the specified file, which adds it to Spectrum’s resource search path. The Failed flag
is set if the specified file’s resource fork could not be opened.
If a script frequently uses commands that access resources out of a particular file (such as Draw Picture and
Draw Icon) the script can be sped up by opening the resource file in advance. This is much faster because
Spectrum doesn’t have to open and close the resource file around each command; Spectrum will instead just
always find the resource in memory (the most-recently opened resource file is searched first).
This command lets scripts create and store all its related resources in one file. However, because these
resources are opened and installed at the head of Spectrum’s resource search path, script authors who use this
feature must take care not to use resource ID numbers that conflict with any of Spectrum’s resources (otherwise
Strange Things may happen).
When creating a resource file for use with Spectrum, use resource IDs in the range $7001 and above to avoid
conflicts. NOTE: Resource names are case sensitive.

Advanced Commands 85

Close ResFile FileNum
FileNum can be from 0 to 9
Closes the specified resource file.
Close ResFiles
Closes all resource files opened with the Open ResFile command.
Set Failed
Sets the Failed flag.
Clear Failed
Clears the Failed flag.
Shut Down
Closes any files opened by the script, calls the AutoSaveBuffer routine, stops the script, then shuts down the
system.
Set DiskErrors State
State can be Off or On
When a disk-related error occurs (e.g. “file busy” or “disk full”) Spectrum normally generates a script error. The
script error can be caught and handled by the script using an On Error Goto routine.
Another approach is to turn DiskErrors off, which will not generate a script error for disk-related problems.
Instead, when a command that accesses the disk is used, the Failed flag is set or cleared to indicate whether
the command was successful.
If the disk command fails a script can use the $ErrorCode and $ErrorMsg replacement items to determine what
error occurred.
NOTE: Only disk access commands are affected; script errors (e.g., using a file number that is already in use)
will still cause a script error to appear.
Set ScriptLock State
State can be Off or On
ScriptLock can be turned on to prevent a script from being interrupted by the user. When ScriptLock is on:

•! On the File menu: the Launch and Quit menu items are dimmed, and the Close menu item is dimmed
when the Online Display is frontmost.

•! On the Phone menu: the Answer Back menu item is dimmed.
•! The entire Script menu is dimmed.
•! Pressing Escape will not stop the script.

If you use this command you must be very careful that you provide some way to exit your script, otherwise the
user will have to restart the computer to quit Spectrum!

•! Previously, ScriptLock On would completely ignore the Escape key. Now the Escape key is processed
normally if “On Escape” is active.

Compress Script "Source" "Destination"
Source is the FoldernameFilename of a Spectrum Script file
Destination is a FoldernameFilename parameter
Compresses the data fork of the Source file and saves it as Destination with the “Compressed Spectrum Script”
file/auxtype. A script error occurs if an error occurs. This command is intended only to compress script files, so it
works only on Teach or Text files whose data forks are less than 64K.
There is no corresponding Uncompress command—the only way to use a compressed script file is by choosing
Run A Script from the Script menu, by running a script that RUNs or CHAINs to the script, or by double-clicking a
compressed script in the Finder.
When compressing a script you should be sure to keep the Source file intact. To help prevent mistakes,
Destination must not already exist, otherwise the Failed flag is set.

Advanced Commands & Speciality Commands 86

Save Editor
If the editor contents need to be saved, this command saves the contents. If the editor had not be saved before
(i.e. it is a new file) then the command presents the standard file dialog box so the user can specify where to put
the file and what to name it.
The Failed flag is set or cleared to indicate the success of the command.
External CommandName Data
Shortcut: Ext
CommandName is required
Data is optional (depends on the particular external)
This broadcasts an IPC message to Spectrum XCMD~COMMANDNAME~. The external acts on the command
(what the command does, and the format of any Data being passed, is entirely up to the external module).
The Failed flag is cleared or set to indicate the success or failure of the command.
Compile Script "SourcePathFileName" "TargetPathFileName"
Optimises a script by converting the commands into tokens, and removing any white space and REM
statements. This can speed up the execution of some scripts by a factor of two.
Set KeyTranslation Value
Value can be “None” or “Standard”
By default, KeyTranslation is set to “None” while the online display is open. This script command overrides that
setting.
Set Signature “String”
Assigns a “String” that will be inserted into any open TextEdit control with the OA-T key command.
Reboot
Similar to “Shut Down”, but reboots the system instead of just shutting down.

Specialty Commands
Load Screen "FoldernameFilename"
Loads a screen image graphic (packed $C0/0001 or unpacked $C1/0000) into the Spectrum SHR display
(Spectrum’s Save Screen command creates a suitable file). Only the picture data is loaded; the SCBs and
palettes are ignored, as are the first 13 scanlines of the graphic (skipping the menu bar).
This command does nothing if the Spectrum SHR display is not open and frontmost.
NOTE: Loading a screen just loads a graphic image of the screen. Like the Draw commands, screen updates
will not refresh the graphic image.
DirectAction "String" Varname
As in v1.0, this command passes String to the current online display for processing; and the results are returned
in Varname. The options available depend on the online display being used, and in v2.0 the Spectrum SHR
display added two new commands. Refer to the online help for details.
Set Update
Sets the $Update replacement item to 1. If a script is watching the $Update replacement to see if a screen
update is needed, this will make the script think Spectrum has just redrawn the display in response to a system
update event.
Clear Update
Sets the $Update replacement item to 0. When a screen update occurs on a super hires display, $Update is set
to 1, which is a signal to advanced scripts to redraw special screen elements (rectangles, icons, etc.). After the
script updates the screen it would include a Clear Update command so the screen won’t be updated again until
another update is needed.

Speciality Commands 87

Draw Rectangle Left Right Top Bottom Fill Frame Radius
Works as it did in version 1, with the addition of the optional Radius value (1-64) to create rectangles with
rounded corners.
Draw Icon X,Y "Icon" "FoldernameFilename"
Works as it did in version 1, except if the specified resource is not found the Failed flag is set (no script error).
Draw DimIcon X,Y "Icon" "FoldernameFilename"
This command is identical to the Draw Icon command, except that it draws the icon so it looks “dimmed.”
Draw Picture X,Y "Picture" "FoldernameFilename"
Works as it did in version 1, except if the specified resource is not found the Failed flag is set (no script error).
Draw Text X,Y "String" "Family" Size Style Color
X is a value from 0 to 639
Y is a value from 0 to 186
Family is optional; if used it is a either value or a string that identifies the font
Size is optional; if used it is a value from 2 to 255
Style is optional; if used it is a value from 0 to 31
Color is optional; if used it is a value from 0 to 15

Draws String on the screen at coordinates (X,Y). The standard font is Shaston, 8 point, plain text, in black. If
Family is specified then that font is used (if available in the system). If Size is specified then that size is used,
and so on.
To determine the correct Style value, add the values for each style you want to use:

For example, to use Bold+Italic+Shadow the Style value would be 19 (1+2+16).
Define Hitzone Num Left, Right, Top, Bottom CornerRadius Color
Num is a value from 1 to 32
Left and Right are values from 0 to 640
Top and Bottom are values from 0 to 186
CornerRadius is optional; if used it is a number from 0-64
Color is optional; if used it is a value from 0 to 15

Defines a rectangular area that can act like a “button.” NOTE: This command works only on 640 mode super-
hires screen displays.
When hitzones are turned on, clicking inside a hitzone will highlight it. If the mouse button is released while
inside a hitzone the $Hit replacement item will indicate which hitzone number was clicked.
Clear Hit
If $Hit is not zero then a hitzone was clicked. After performing the desired action your script must include a Clear
Hit command to reset $Hit to 0 (otherwise your script will think that the user has clicked a hitzone again).
Flash Hitzone Num
Num is a value from 1 to 32
Simulates a click on the specified hitzone, exactly as if the user had manually clicked it (i.e., $Hit is set to the
given number and any associated HitAction is performed). The Failed flag is set if the specified hitzone does not
exist, or if the SHR display is not open.
Delete Hitzone Num
Num is a value from 1 to 32
Erases the frame around the specified hitzone, then deletes the hitzone so it is no longer active.
Delete Hitzones
Deletes all the hitzones, but does not erase each individual hitzone (Display “^L” to clear the screen).

Plain = 0 Bold = 1 Italic = 2

Underline = 4 Outline = 8 Shadow = 16

Speciality Commands 88

Set Hitzones State
State can be Off or On
Determines whether hitzones are active or not (when Off, clicking inside a hitzone does nothing).
Set HitAction Action
Action is a value from 0-4
After the mouse button goes down in a hitzone the zone is highlighted and tracked. If the mouse button is
released while still inside the hitzone then Spectrum sets the $Hit replacement item to the hitzone number that
was clicked. Optionally, an additional action can occur:

Store Hitzones
Stores the current hitzones and the associated settings.
Restore Hitzones
Restores the previously-stored hitzones and settings and redraws the hitzones on the screen.
Set Hit Num
Num is a value from 0 to 65535
Sets the $Hit replacement to the specified number. This is mainly available for XCMDs to use, but could be
useful if your script wants to “fake” a hit.
Set Cursor Value
Value is a value 0-6
Sets the mouse cursor to one of the following pointers:

Action Result
0 Do nothing else

1 Post an ESCape keypress (will trigger on “On Escape”
handler, or will abort the script if On Escape has not
been used)

2 Post a Return keypress (will complete a Get Key, Get
Line, Input Key, Input Line, or Waitfor Keyboard
command)

3 Post a Return into the port input stream (will complete
a Get Key, Get Line, Read Char, or Read Line
command)

4 Post “Hitzone” text into the port input stream (will
complete a Waitfor String “Hitzone” command)

Cursor Action
0 Hide (hides the current cursor)

1 Show (shows the current cursor)

2 Arrow

3 Watch (animates if a cursor animation extra is installed)

4 Spectrum Watch (won’t animate)

5 I-Beam

6 Forces the Cursor into selected format

Speciality Commands 89

Freeze Cursor
Unfreeze Cursor or Melt Cursor
Hides and disables the Cursor. This is the same effect as you will get when downloading files. The cursor will
be restored when the script stops.
Drop DTR Value
Value is a number from 1-60
Drops the DTR line to the modem for the given number of seconds. Without the optional value, it defaults to 2
seconds.
Post Input "String"
Posts the “String” into the input buffer as if it had come from the port.
Show Window "String"
Opens a dialog style window and displays the "String" in LETextBox format. This window complements the new
commands for “Set ScreenBypass” by allowing messages to be displayed while there is no active window open.
Close Window
Closes the window opened by “Show Window”.

Index 90

$$ (Dollar Sign) ! 9
$^ (Caret) ! 9
$ (Replacement Item) ! 8
" (String Delimiter) ! 7
^ (Control Character) ! 6
(Comment Character) ! 7
$# (Variable Contents) ! 9
$Aqua ! 12
$AutoSavePath ! 12
$Black ! 12
$Blue ! 12
$Boot ! 11
$BrightGreen ! 12
$Brown ! 12
$Cost ! 10
$CurrentX ! 11
$CurrentY ! 11
$DarkGreen ! 12
$Date ! 9
$DateTimeStamp ! 9
$Day! 10
$DayText ! 10
$DisplayVersion ! 9
$ErrorMsg ! 11
$FileXferPath ! 12
$FKey# ! 9
$ForValue# ! 11
$FrontmostApp ! 12
$FullTime ! 10
$Gray1 ! 12
$Gray2 ! 12
$Hour ! 10
$LastPath ! 12
$Length# ! 9
$LogonFile ! 12
$Matched ! 10
$MatchString ! 11

$MenuFile ! 12
$MenuPath ! 12
$Minute ! 10
$Month ! 10
$MonthText ! 10
$OnlineDisplay ! 9
$Orange ! 12
$PaleGreen ! 12
$Periwinkle ! 12
$PhoneEntries ! 11
$Pink ! 12
$PTimer ! 11
$Purple ! 12
$Rate ! 10
$Red ! 12
$ScriptFile ! 11
$ScriptPath ! 11
$Second ! 10
$SFPrefix ! 11
$SpectrumFile ! 11
$SpectrumPath ! 11
$StoredX ! 11
$StoredY ! 11
$Time ! 10
$Timer ! 10
$UserName! 9
$Version ! 9
$White ! 12
$Year! 10
$Yellow ! 12

A
Add ! 32
Advanced Commands ! 55
Append ! 45
Append CaptureFile ! 45
Append File ! 49

Index

This index attempts to reference all the topics you might look up.

Index 91

Append ScriptEditor ! 50
Apply Format ! 52
Apply LFsToCRs ! 51
Apply LowASCII ! 51
Apply RemoveControls ! 51
Apply RemoveSpaces ! 51
Apply Replace ! 51
Apply Special ! 51
ASCII ! 57
Ask ! 35
AutoChat ! 43
AutoReceive ! 24
AutoResume ! 24
AutoSave ! 45
AutoSaveBuffer ! 45
AutoSavePath ($ Replacement Item) ! 12

B
Baud ! 21
BinaryII ! 69
Boot ($ Replacement Item) ! 11
Branching ! 36
Break ! 19
Buffer ! 45, 46

C
Capture Buffer ! 45, 46
Capture Buffer Control ! 45
Capture File ! 45
CarrierDetect (If) ! 42
CaseSensitive ! 54
Catalog ! 48, 50
Catalogs (Reading) ! 50
Chain ! 30
CHAR ! 57
Character Filter Settings ! 23
Character Input ! 34, 35
Character Parameter ! 14
CharDelay ! 21
ChatLine ! 43
Circle ! 55
Clear Buffer ! 45
Clear For ! 38
Clear MenuFile ! 20
Clear PortBuffer ! 57
Clear ScriptEditor ! 51
Clear Scrollback ! 17

Clear Timer ! 27
Clear Variables ! 31
Close CaptureFile ! 45
Close Catalog ! 50
Close File ! 49
Close OnlineDisplay ! 22
Color Values ($ Replacement Items) ! 12
Commands ! 18
Comment Character ! 8
Compare ! 33
Concatenate ! 31
Conditional Tests ! 39
ConnectWait ! 26
Contains (If) ! 39
Control Character ! 7
Copy! 47
Cost ($ Replacement Item) ! 10
Country ! 23
Create ! 47
CurrentX ($ Replacement Item) ! 11
CurrentY ($ Replacement Item) ! 11

D
Data Format ! 21
Date ($ Replacement Item) ! 9
DateTimeStamp ($ Replacement Item) ! 9
Day ($ Replacement Item) ! 10
DayText ($ Replacement Item)! 10
DCD ! 22
Debug ! 65
Debug (If) ! 42
Decrement ! 32
Delete ! 47, 74
DeleteBack ! 22
Delimiter ! 7
DFormat ! 21
Dial Entry ! 26
Dial Service ! 26
Dial String ! 26
Dialing ! 26
DirectAction ! 55
DirectDisplay ! 55
Directories (Reading) ! 50
Display ! 18
DisplayFilter ! 23
DisplayRecord ! 19

Index 92

DisplayVersion ($ Replacement Item) ! 9
Divide ! 33
Draw Circle ! 55
Draw Icon ! 55
Draw Line ! 55
Draw Rectangle ! 55
Draw Window ! 43
Duplex ! 21

E
Echo ! 21
Editor ! 50
Entry (Dial) ! 12
Equal (If) ! 39
Errors

$ErrorMsg Replacement Item ! 11
Error Control! 52
On Error Goto ! 53
On Error GotoNext ! 53

Escape
On Escape Goto ! 52
On Escape GotoNext ! 52

Even (If) ! 41
Exists (If) ! 40
Exit " 73
Expand Variable ! 57

F
Failed (If) ! 40
File

Append File ! 49
Close File ! 49
File Transfer ! 46
File Transfer Settings ! 24
Get File ! 48
Get FileInfo ! 47
Get FileSize ! 47
Open File ! 49
Put File ! 48
Read File ! 49
Set FileXferPath ! 24
Show File ! 48
Write File ! 49

Filename Parameter ! 13
FileXferPath ($ Replacement Item) ! 12
FKey

$FKey# Replacement Item ! 9
Set FKey ! 20

Flush ! 43
Foldername Parameter ! 13
Folders (Reading) ! 47

For/Next Loops ! 38
Format ! 52
ForValue# ($ Replacement Item) ! 11
Found (If) ! 41
FrontmostApp ($ Replacement Item) ! 12
Full Duplex ! 21
FullTime ($ Replacement Item) ! 10
Fundamental Commands ! 18

G
Get File ! 48
Get FileInfo ! 47
Get FileSize ! 47
Get Key ! 34
Get Line ! 34
Get PhoneEntry ! 26
Get Random ! 32
Get VolumeFree ! 47
Get VolumeSize ! 47
Getting Input ! 34
Gosub ! 36
GosubNext ! 37
Goto ! 36
GotoNext ! 36
GotoXY ! 43
GSPrefix ! 44

H
Half Duplex ! 21
Handshake ! 21, 42
Hangup ! 27
Hardware Handshaking ! 21, 56
Hexadecimal Value ! 14
Hour ($ Replacement Item) ! 10

I
Icon ! 55
If CarrierDetect ! 42
If Contains ! 39
If Debug! 42
If Equal ! 39
If Even ! 41
If Exists! 40
If Failed ! 40
If Found ! 41
If Keyboard ! 39
If Not CarrierDetect ! 42

Index 93

If Not Contains ! 39
If Not Debug ! 42
If Not Equal ! 39
If Not Even ! 41
If Not Exists ! 40
If Not Failed ! 40
If Not Found ! 41
If Not Keyboard ! 40
If Not Null ! 41
If Not Odd ! 42
If Not TheManager ! 42
If Null ! 41
If Odd ! 41
If TheManager ! 42
Increment ! 38
Init! 57
Initialize Modem ! 57
InitString ! 57
Input Key! 35
Input Keyboard ! 34
Input Line ! 35

K
Keyboard (If) ! 39
Keyboard Input ! 34
KeyFilter ! 23
KeyLock! 34

L
Label

Label Parameter ! 13
Set Labels ! 36

LastPath ($ Replacement Item) ! 12
Launch ! 30
Length# ($ Replacement Item) ! 9
LFsToCRs ! 51
Line ! 55
Line Input ! 35
LineDelay ! 21
Load Buffer ! 46
Load MenuFile ! 20
Load ScriptEditor ! 50
Load Settings ! 20
LogonFile ($ Replacement Item) ! 12
Loops ! 36
LowASCII ! 22, 51

M
Make ASCII ! 57
Make CHAR ! 57
Matched ($ Replacement Item) ! 10
MatchString ($ Replacement Item) ! 11
MenuFile

Clear MenuFile ! 20
Load MenuFile ! 20

MenuFile ($ Replacement Item) ! 12
MenuPath ($ Replacement Item) ! 12
Minute ($ Replacement Item) ! 12
Month ($ Replacement Item) ! 10
MonthText ($ Replacement Item) ! 10
Multiply ! 33

N
Next ! 36
Not CarrierDetect (If) ! 42
Not Contains (If) ! 39
Not Debug (If) ! 42
Not Equal (If) ! 39
Not Even (If) ! 41
Not Exists (If) ! 40
Not Failed (If)! 40
Not Found (If) ! 41
Not Keyboard (If) ! 40
Not Null (If) ! 41
Not Odd (If) ! 42
Not TheManager (If) ! 42
Null (If) ! 41

O
Odd (If) ! 41
Offline ! 22
On Error Goto ! 53
On Error GotoNext ! 53
On Escape Goto ! 52
On Escape GotoNext ! 52
On value Gosub ! 37
On value GosubNext ! 38
On value Goto ! 37
On value GotoNext ! 37
Online Display

$OnlineDisplay Replacement Item ! 9
Close Online Display ! 22
Set OnlineDisplay ! 22

Online Display Settings ! 22

Index 94

Open CaptureFile! 45
Open Catalog! 50
Open File ! 49
OS Utilities ! 47

P
PadCR ! 24
Parameters ! 13

Character ! 14
Filename ! 14
Foldername ! 14
Label ! 15
Pathname ! 15
Statement ! 15
String ! 14
Value ! 13
VarNum ! 13
Volumename ! 14

Password
Send Password! 27
Set Password ! 27

Pathnames ! 11
$AutoSavePath ! 12
$Boot ! 11
$FileXferPath ! 12
$FrontmostApp ! 12
$LastPath ! 12
$LogonFile ! 12
$MenuFile ! 12
$MenuPath ! 15
$ScriptFile ! 11
$ScriptPath ! 11
$SFPrefix ! 11
$SpectrumFile ! 11
$SpectrumPath ! 11

Parameters ! 13
Prefix Control ! 44

Set GSPrefix ! 44
Set SFPrefix ! 44

Pause! 29
PhoneEntries ($ Replacement Item) ! 11
PhoneEntry ! 26
Picture ! 56
Play Sound ! 27
Pop ! 37
Pop All ! 72
Port ! 38
Port Settings! 21
PortBuffer ! 57
Position ! 31
Prefix Control ! 44
Print Screen ! 43

ProDOSX ! 25
Program Control ! 29
Prompt ! 24
PTimer

$PTimer Replacement Item ! 11
Set PTimer ! 24

Put File! 49

Q
Quit ! 31
Quote ! 54

R
Random ! 32
Rate

$Rate Replacement Item ! 10
Set Rate ! 27

Read Catalog ! 50
Read File ! 49
Receive ! 46
Record ! 19
Record Catalog ! 48
Rectangle ! 55
RelaxedXfers ! 25
RemoveControls ! 51
RemoveLFs ! 23
RemoveSpaces ! 51
Rename! 47
Replace ! 51
Replacement Item ! 8
Restore ForLoops ! 39
Restore Settings ! 20
Restore Variables ! 31
Restore XY ! 43
Resume ! 53
Return ! 37
RTS ! 56
Run ! 29

S
Save Buffer ! 45
Save Screen ! 43
Save ScriptEditor ! 50
Save Settings ! 20
Screen

Print Screen ! 43
Save Screen ! 43
Set Screen ! 44

Screen Appearance ! 43

Index 95

ScreenBlank ! 44
Script

Chain ! 30
Run ! 29
Script Control ! 29
Stop Script ! 29

Script Commands ! 16
Script Development ! 17
Script Editor ! 50, 51
Script Interpretation ! 54
Script Language Definitions ! 7
ScriptFile ($ Replacement Item) ! 11
ScriptKeys ! 22
ScriptPath ($ Replacement Item) ! 11
Scrollback ! 17
Second ($ Replacement Item) ! 10
Send ! 46
Send Password ! 27
Send ScriptEditor ! 50
SendAhead ! 25
SendLFs ! 21
Service (Dial) ! 26
Set Append ! 45
Set AutoChat ! 43
Set AutoReceive ! 24
Set AutoResume ! 24
Set AutoSave ! 45
Set AutoSaveBuffer ! 45
Set Baud ! 21
Set BinaryII ! 24
Set Buffer ! 45
Set CaseSensitive ! 54
Set CharDelay ! 21
Set ChatLine ! 43
Set ConnectWait ! 26
Set Country ! 23
Set DCD ! 22
Set Debug ! 17
Set DeleteBack ! 22
Set DFormat! 21
Set DisplayFilter ! 23
Set Duplex ! 21
Set Echo ! 21
Set FileXferPath ! 24
Set FKey ! 20
Set Flush ! 43

Set GSPrefix ! 44
Set Handshake ! 21
Set Init ! 57
Set InitString ! 57
Set KeyFilter ! 23
Set KeyLock ! 34
Set Labels ! 36
Set LineDelay ! 21
Set LowASCII ! 22
Set OnlineDisplay ! 22
Set PadCR ! 24
Set Password ! 27
Set Port ! 22
Set ProDOSX! 25
Set Prompt ! 24
Set PTimer ! 24
Set Quote ! 54
Set Rate ! 27
Set RelaxedXfers ! 25
Set RemoveLFs ! 23
Set RTS ! 56
Set Screen ! 44
Set ScreenBlank ! 44
Set ScriptKeys ! 22
Set SendAhead ! 25
Set SendLFs ! 21
Set SFPrefix ! 44
Set ShowControls ! 17
Set SmartPaste! 20
Set Sound ! 23
Set StatLine ! 43
Set Timeout! 34
Set Timer ! 27
Set Token ! 54
Set Turbo ! 25
Set ULTextShow ! 24
Set Variable ! 31
Set XonXoff ! 21
Set ZErrors ! 25
Settings ! 20

Character Filter ! 23
File Transfer ! 24
Load Settings ! 20
Online Display ! 22
Port ! 21
Restore Settings ! 20
Save Settings ! 20

Index 96

Store Settings! 20
SFPrefix

$SFPrefix Replacement Item ! 11
Set SFPrefix ! 44

Show Catalog ! 48
Show Error ! 53
Show File ! 48
ShowControls ! 17
ShowRecord Catalog ! 48
Sound ! 23

Play Sound ! 27
SP.Snds.Aux ! 28
SP.Snds.Main ! 28

Special ! 51
Specially-Treated Characters ! 7
Specialty Commands ! 55
SpectrumFile ($ Replacement Item) ! 11
SpectrumPath ($ Replacement Item) ! 11
Statement Parameter ! 15
StatLine! 43
Stop Script ! 29
Store ForLoops ! 39
Store Settings ! 20
Store Variables ! 31
Store XY! 43
StoredX ($ Replacement Item) ! 11
StoredY ($ Replacement Item)! 11
String

Concatenate ! 31
Dial String ! 26
Position ! 31
String Delimiter ! 7
String Parameter! 14
Substring! 32
WaitFor String ! 75

Substring ! 32
Subtract ! 33
Swap ! 33

T
TheManager (If) ! 42
Time

$Time Replacement Item ! 10
WaitFor Time ! 29

Timeout
Set Timeout! 34

Timer
$Timer Replacement Item ! 10
Clear Timer ! 27
Set Timer ! 27

Token ! 54
Transferring Files ! 46
Transmit ! 19
Turbo ! 25

U
ULTextShow ! 24
UserName ($ Replacement Item) ! 9

V
Value Parameter ! 13
Variables ! 31

Add ! 32
Clear Variables ! 31
Compare ! 33
Decrement ! 32
Divide ! 33
Increment ! 32
Multiply ! 33
Restore Variables ! 31
Set Variable ! 31
Store Variables ! 31
Subtract ! 33
Swap ! 33

VarNum Parameter ! 13
Version ($ Replacement Item) ! 9
VolumeFree ! 47
Volumename Parameter ! 14
VolumeSize ! 47

W
WaitFor Keyboard ! 34
WaitFor String ! 34
WaitFor Time ! 29
Window ! 43
Write Buffer ! 46
Write File ! 81

X
Xmit ! 19
XonXoff ! 21
XY ! 43

Y
Year ($ Replacement Item) ! 10

Z
ZErrors! 25

Index 97

Index
Changes v2.5.3

$ (Replacement Items) ! 59
$ActiveSocket ! 63
$ActualFilePos# ! 60
$AutoSaveBuffer ! 61
$AutoSaveFile ! 59
$Baud ! 60
$Buffer ! 59
$BufferDirty ! 61
$BufferSaved ! 62
$BufferSize ! 62
$ChainLevel ! 62
$ChatLine ! 60
$Date ! 59
$Date2 ! 62
$DateTimeStamp ! 59
$DateTimeStamp2 ! 62
$Debug ! 59
$DebugFile ! 59
$DFormat ! 60
$Dialed ! 61
$DisplayOpen ! 62
$DoHangup ! 61
$DoReturn ! 62
$Duplex ! 60
$Echo ! 60
$EditorDirty ! 61
$EditorFile ! 60
$EditorHandle# ! 61
$EditorSize# ! 60
$EOF# ! 60
$EOLChar1 ! 63
$EOLChar2 ! 63
$ErrorCode ! 59
$ErrorMsg ! 59
$FailureCode ! 61
$FileID# ! 62
$FilePos# ! 60
$FlushChar ! 63
$FlushFrequency ! 63
$FreeMem ! 62

$FreeSockets ! 63
$FullTime ! 59
$Hit ! 61
$IPAddress ! 63
$LastFile ! 59
$LastScriptFile ! 60
$LastScriptPath ! 60
$LastXferFile ! 59
$LastXferPath ! 59
$LongYear ! 59
$PBDisplay ! 61
$PBFile ! 61
$PBMethod ! 61
$PBNumber ! 61
$PBPath ! 61
$PBRedial ! 61
$PortSize ! 62
$Quote ! 60
$ReceiveAType ! 59
$ReceiveFType ! 59
$ReplyQuote ! 60
$ScrollSize ! 62
$SEDirty# ! 61
$SendLines ! 60
$SerialActive ! 62
$Signature ! 62
$StatLine ! 60
$TCPActive ! 62
$TCPConnectName ! 63
$TCPError ! 62
$TCPInstalled ! 62
$TCPIPID# ! 62
$TCPMessages ! 63
$TCPMode ! 63
$TCPNotify ! 63
$TCPOnline ! 41
$Token ! 60
$Trigger ! 59
$Update ! 61
$Version ! 59
$Year2 ! 62

A
ActiveSocket ($ Replacement Item) ! 63
ActualFilePos# ($ Replacement Item) ! 60
Advanced Commands ! 84

Index 98

Append CaptureFile ! 79
Append ScriptEditor ! 82
Apply Format ! 82
Apply LFsToCRs ! 82
Apply LowASCII ! 82
Apply RemoveControls ! 82
Apply RemoveSpaces ! 82
Apply Replace ! 82
Apply Special ! 82
Ask ! 75
AutoReceive ! 69
AutoSave ! 79
AutoSaveBuffer ($ Replacement Item) ! 61
AutoSaveFile ($ Replacement Item) ! 59

B
Baud ($ Replacement Item) ! 60
BinaryII ! 69
Branching and Loops ! 76
Buffer ! 79
Buffer ($ Replacement Item) ! 59
BufferDirty ($ Replacement Item) ! 61
BufferSaved ($ Replacement Item) ! 62
BufferSize ($ Replacement Item) ! 62

C
Capture Buffer ! 79
Capture Buffer Control ! 79
CaptureFile ! 79
CarrierLoss ! 76
CaseChange ! 73
Catalog ! 82
Catalogs (Reading) ! 82
Chain ! 73
Chainback ! 73
ChainLevel ($ Replacement Item) ! 62
ChatLine ($ Replacement Item) ! 60
Check TCPSockets ! 71
Clear Clipboard ! 66
Clear Desktop ! 68
Clear Failed ! 85
Clear Hit ! 87
Clear Screen ! 66
Clear ScriptEditor ! 82
Clear SEDirty ! 83
Clear Update ! 86
Clear Variables ! 74

Close Help ! 66
Close OnlineDisplay ! 68
Close ResFile ! 85
Close ResFiles ! 85
Close TCPSocket ! 71
Close Window ! 89
Compare ! 73
CompareStrings ! 76
Compile Script ! 86
Compress Script ! 85
Conditional Tests ! 77
Connected ! 70
Copy File ! 80
Create ScriptEditor ! 83

D
Date ($ Replacement Item) ! 59
Date2 ($ Replacement Item) ! 62
DateTimeStamp ($ Replacement Item) ! 59
DateTimeStamp2 ($ Replacement Item) ! 62
Debug ! 65
Debug ($ Replacement Item) ! 59
DebugFile ($ Replacement Item) ! 59
DebugTimeInfo ! 65
Define Hitzone ! 87
Define Trigger ! 84
Defined ! 78
Delete Hitzone ! 87
Delete Hitzones ! 87
Delete String ! 74
Delete Trigger ! 84
Delete Triggers ! 84
Delete Variables ! 74
Desktop ! 68, 78
DFormat ($ Replacement Item) ! 60
Dial Entry ! 70
Dial Service ! 70
Dialed ($ Replacement Item) ! 61
Dialing ! 70
DimIcon ! 87
DirectAction ! 86
Directories (Reading) ! 82
DirectTransmit ! 66
DiskErrors ! 85
DisplayOpen ($ Replacement Item) ! 62
DoHangup ($ Replacement Item) ! 61

Index 99

DoReturn ($ Replacement Item) ! 62
Draw DimIcon ! 87
Draw Icon ! 87
Draw Picture ! 87
Draw Rectangle ! 87
Draw Text ! 87
Drop DTR ! 89
Duplex ($ Replacement Item) ! 60

E
Echo ($ Replacement Item) ! 60
Editor ! 86
EditorDirty ($ Replacement Item) ! 61
EditorFile ($ Replacement Item) ! 60
EditorHandle# ($ Replacement Item) ! 61
EditorSize# ($ Replacement Item) ! 60
Else ! 78
Entry (Dial) ! 70
EOF# ($ Replacement Item) ! 60
EOLChar1 ($ Replacement Item) ! 63
EOLChar2 ($ Replacement Item) ! 63
Error Control ! 83
ErrorCode ($ Replacement Item) ! 59
ErrorMsg ($ Replacement Item) ! 59
Evaluate ! 75
Event ! 67
Exit ! 73
External ! 58, 61
External Commands (XCMDs) ! 86

F
Failed ! 85
FailureCode ($ Replacement Item) ! 61
False ! 77
FileID# ($ Replacement Item) ! 62
File Transfer ! 79
File Transfer Settings ! 68
FilePos ! 81
FilePos# ($ Replacement Item) ! 60
FileXferPath ! 68
Flash Hitzone ! 87
Flush ! 71, 78
FlushChar ($ Replacement Item) ! 63
FlushFrequency ($ Replacement Item) ! 63
Flush TCPSendBuffer ! 71
Folders (Reading) ! 82
For/Next Loops ! 73

FreeMem ($ Replacement Item) ! 62
FreeSockets ($ Replacement Item) ! 63
Freeze Cursor ! 89
FullTime ($ Replacement Item) ! 59

G
Get File ! 81
Get FileInfo ! 80, 82
Get MacFileInfo ! 80
Get MultiFile ! 81
Get ServiceInfo ! 70
Get TCPData ! 71
Get TCPEditor ! 71
Get TCPHandle ! 71
Get TCPServiceEntry ! 72
Get TCPStatus ! 72
Get TriggerInfo ! 84
Getting Input ! 75

H
Hit ($ Replacement Item) ! 61
HitAction ! 88
Hitzone ! 87, 88

I
Icon ! 87
IdleTimer ! 76
If Defined ! 78
If Desktop ! 78
If False ! 77
If Not Contains ! 77
If Not Defined ! 78
If Not Desktop ! 78
If Not Null ! 78
If Null ! 77
If True ! 77
Insert String ! 74
IPAddress ($ Replacement Item) ! 63

J
JudgeName ! 89

L
LastFile ($ Replacement Item) ! 59
LastScriptFile ($ Replacement Item) ! 60
LastScriptPath ($ Replacement Item) ! 60
LastXferFile ($ Replacement Item) ! 59
LastXferPath ($ Replacement Item) ! 59
Launch ! 73

Index 100

Load Buffer ! 79
Load Screen " 86
Load ScriptEditor ! 82
Load Settings ! 68
LongYear ($ Replacement Item) ! 59

M
MacBinary ! 69
Make CaseChange ! 73
Match String ! 74
Melt Cursor ! 89

N
Null ! 77, 78

O
Offline ! 68
On CarrierLoss ! 76
On Compare ! 77
On CompareStrings ! 76
On Trigger ! 84
On Value ! 77
Onhook ! 70
Online Display ! 68
Online Display Settings ! 68
Open Help ! 66
Open ResFile ! 84
Open TCPSocket ! 70
OS Utilities ! 80
Overlay String ! 74

P
Parameters ! 64
Varname ! 64
PBDisplay ($ Replacement Item) ! 61
PBFile ($ Replacement Item) ! 61
PBMethod ($ Replacement Item) ! 61
PBNumber ($ Replacement Item) ! 61
PBPath ($ Replacement Item) ! 61
PBRedial ($ Replacement Item) ! 61
Picture ! 87
Play Event ! 67
Play Sound ! 67
Pop Chainback ! 73
Pop All Chainback ! 73
PortSize ($ Replacement Item) ! 62
Post Input ! 89
Print ScriptEditor ! 82

Program Control ! 73

Q
Quit ! 73
Quit2 ! 73
Quote ! 83
Quote ($ Replacement Item) ! 60

R
Read Catalog ! 82
Read Char ! 76
Read File ! 81
Read Line ! 76
Reboot ! 86
Receive ! 79
ReceiveAType ! 69
ReceiveAType ($ Replacement Item) ! 59
ReceiveFType ! 69
ReceiveFType ($ Replacement Item) ! 59
ReceivePath ! 69
Rectangle ! 87
RelaxedXfers ! 68
Rename ! 80
Replacement Item ! 59
ReplyQuote ! 68
ReplyQuote ($ Replacement Item) ! 60
ResFile ! 84
Restore Hitzones ! 88
Restore Screen ! 84
Restore Variables ! 73
ResumeNext ! 83
Run ! 73

S
Save Editor ! 86
Save ScriptEditor ! 83
Save Settings ! 68
Screen ! 66
Screen Appearance ! 78
ScreenBlank ! 78
Script Control ! 73
Script Development ! 65
Script Editor ! 82
Script Interpretation ! 83
ScriptLock ! 85
ScrollData ! 68
ScrollSize ($ Replacement Item) ! 62

Index 101

Search File ! 82
SEDirty ! 83
SEDirty# ($ Replacement Item) ! 61
Send ScriptEditor ! 82
Send File ! 79
SendLines ! 69
SendLines ($ Replacement Item) ! 60
SendPath ! 69
Send TCPData ! 71
Send TCPEditor ! 71
SerialActive ($ Replacement Item) ! 62
Service (Dial) ! 70
ServiceInfo ! 70
Set AutoReceive ! 69
Set AutoSave ! 79
Set BinaryII ! 69
Set Cursor ! 68
Set Debug ! 65
Set DebugTimeInfo ! 65
Set DiskErrors ! 85
Set Failed ! 85
Set FileInfo ! 80
Set FilePos ! 81
Set FileXferPath ! 68
Set FKeyMenu ! 66
Set Flush ! 78
Set Hit ! 88
Set HitAction ! 88
Set Hitzones ! 88
Set IdleTimer ! 76
Set KeyTranslation ! 86
Set MacBinary ! 69
Set MacFileInfo ! 80
Set NullStrip ! 68
Set OnlineDisplay ! 68
Set Quote ! 83
Set ReceiveAType ! 69
Set ReceiveFType ! 69
Set ReceivePath ! 69
Set RelaxedXfers ! 68
Set Replacement ! 83
Set ReplyQuote ! 68
Set ScreenBlank ! 78
Set ScreenBypass ! 79
Set ScriptLock ! 85
Set ScrollData ! 68

Set SendLines ! 69
Set SendPath! 69
Set Signature ! 86
Set Update ! 86
Settings ! 68

File Transfer ! 68
Online Display ! 68

Set TCPActiveSocket ! 71
Set TCPClosedResponse ! 72
Set TCPEolTranslation ! 72
Set TCPFlushChar ! 72
Set TCPMessages ! 72
Set TCPNotify ! 72
Set TCPReconnect ! 72
Set XFerStatus ! 79
Show File ! 80
Show ScriptEditor ! 83
Show Window ! 89
Shut Down ! 85
Signature ($ Replacement Item) ! 62
Sound ! 66
Specially-Treated Characters ! 59
Specialty Commands ! 86
StatLine ($ Replacement Item) ! 60
Store Hitzones ! 88
Store Screen ! 84
Store Variables ! 73
String ! 64

Delete String ! 74
Insert String ! 74
Match String ! 74
Overlay String ! 74
Strip Spaces ! 74
Trim Spaces ! 74
Waitfor String ! 75

Strip Spaces ! 74
Switch TCP/IP ! 70

T
TCP/IP ! 70
TCP/IP Menu ! 66
TCPActive ($ Replacement Item) ! 62
TCPConnect ! 70
TCPConnectName ($ Replacement Item) ! 63
TCPDisconnect ! 70
TCPError ($ Replacement Item) ! 62
TCPIPID# ($ Replacement Item) ! 62
TCPInstalled ($ Replacement Item) ! 62

Index 102

TCPMessages ($ Replacement Item) ! 63
TCPMode ($ Replacement Item) ! 63
TCPNotify ($ Replacement Item) ! 63
TCPOnline ($ Replacement Item) ! 62
Text ! 87
Token ($ Replacement Item) ! 60
Transferring Files ! 79
Transmit ! 66
Trigger ! 84
Trigger ($ Replacement Item) ! 59
TriggerInfo ! 84
Trim Spaces ! 74
True ! 77

U
UnFreeze Cursor ! 89
Update " 86
Update ($ Replacement Item) ! 61

V
Variables! 73

Clear Variables ! 74
Delete Variables ! 74
Restore Variables ! 73
Store Variables ! 73

Varname Parameter " 64
Version ($ Replacement Item) ! 59

W
Waitfor String ! 75
Write File ! 81

X
Xmit ! 66

Y
Year2 ($ Replacement Item) ! 40

Extras 103

Problems

Hopefully you will have none, but if you do, and they cannot be answered by
reading these notes, please contact me on:

spectrumdaddy@me.com

Other information

Check for the latest version of Marinetti:

http://www.apple2.org/marinetti/

If you do not already know about my other software, please drop by my home
pages and read more. Amongst other titles there you will find SAM2 an email
client, SAFE2 an FTP client, and SNAP a Usenet news reader..

You will also find on my web site regular updates to my own programs, PDF
manual versions to many of them, as well as many other files that you might find
useful:

http://www.wannop.info/speccie/

Someone once said to me, 'Spectrum™ does everything!

Spectrum™ © 1991-2012 Ewen Wannop

Extras

mailto:spectrumdaddy@me.com
mailto:spectrumdaddy@me.com
http://www.apple2.org/marinetti/
http://www.apple2.org/marinetti/
http://www.versiontracker.com/
http://www.versiontracker.com/

